143 research outputs found

    Development of a Model for the Small-Particle Orbital Debris Population Based on the STS Impact Record

    Get PDF
    In preparation for the release of the Orbital Debris Engineering Model (ORDEM) version 3.1, the NASA Orbital Debris Program Office (ODPO) revisited how orbiting debris populations of characteristic sizes smaller than 1 cm were modeled. The primary contributor to the population of sub-centimeter debris particles is the surface deterioration or erosion of spacecraft materials exposed to the outer-space environment. Because small particulates are not directly trackable by remote sensing, the primary means of detection is via historical counts of small impact features on flown radiator and window surfaces of the U.S. Space Transportation System (STS, also known as the Space Shuttle) from 1995-2011. Historic NASA studies of high-velocity impact tests have related impact-feature size to particle mass and velocity for certain STS surfaces, so that a corresponding particle size may be inferred from each small-impact feature observed. Micro-debris populations are then estimated by modeling the path and orientation of an STS mission through a simulated debris environment, and the densities of this simulated environment are rescaled to approximate the number of observed STS impact features. Monte-Carlo methods are further employed to gauge the estimation uncertainty of the rescaled environment. A description of the chosen methodologies for estimating and adjusting the micro-debris population model, and the results, are presented

    An Electric Propulsion "Shepherd" for Active Debris Removal that Utilizes Ambient Gas as Propellant

    Get PDF
    There is a growing consensus among the space debris technical community that limiting the long ]term growth of debris in Low-Earth Orbit (LEO) requires that space users limit the accumulation of mass in orbit. This is partially accomplished by mitigation measures for current and future LEO systems, but there is now interest in removing mass that has already accumulated in LEO from more than 50 years of space activity (termed "Active Debris Removal", or ADR). Many ADR proposals face complex technical issues of how to grapple with uncooperative targets. Some researchers have suggested the use of conventional ion thrusters to gently "blow" on objects to gradually change their orbits, without ever having to come into physical contact with the target. The chief drawback with these methods is the cost per object removed. Typically, a space "tug" or an ion-drive "shepherd" can only remove a few objects per mission due to limited propellant. Unless a costeffective way that removes tens of objects per mission can be found, it is not clear that any of the ideas so far proposed will be economically viable. In this paper, a modified version of the ion-drive "shepherd" is proposed that uses ambient atmospheric gases in LEO as propellant for the ion drives. This method has the potential to greatly extend the operational lifetime of an ADR mission, as the only mission limit is the lifetime of the components of the satellite itself, not on its fuel supply. An ambient-gas ion-drive "shepherd" would the local atmospheric drag on an object by ionizing and accelerating the ambient gas the target would have encountered anyway, thereby hastening its decay. Also, the "shepherd" satellite itself has a great deal of flexibility to maneuver back to high altitude and rendezvous with its next target using the ion drive not limited by fuel supply. However, the amount of available ambient gas is closely tied to the altitude of the spacecraft. It may be possible to use a "hybrid" approach that supplements high-altitude ion-drive operations with stored gas, and transitions to ambient gas at lower altitudes. This paper will include realistic numbers on the estimated times needed to deorbit objects from different orbit regimes using drives that either partially or completely take advantage of ambient gas. It will conclude with recommendations on whether this is a viable candidate for future ADR efforts

    Characterization of the 2012-044c Briz-M Upper Stage Breakup

    Get PDF
    On 6 August, 2012, Russia launched two commercial satellites aboard a Proton rocket, and attempted to place them in geosynchronous orbit using a Briz-M upper stage (2012-044C, SSN 38746). Unfortunately, the upper stage failed early in its burn and was left stranded in an elliptical orbit with a perigee in low Earth orbit (LEO). Because the stage failed with much of its fuel on board, it was deemed a significant breakup risk. These fears were confirmed when it broke up 16 October, creating a large cloud of debris with perigees below that of the International Space Station. The debris cloud was tracked by the US Space Surveillance Network (SSN), which can reliably detect and track objects down to about 10 cm in size. Because of the unusual geometry of the breakup, there was an opportunity for NASA Orbital Debris Program Office to request radar assets to characterize the extent of the debris cloud in sizes smaller than the standard debris tracked by the SSN. This paper will describe the observation campaign to measure the small particle distributions of this cloud, and presents the results of the analysis of the data. We shall compare the data to the modelled size distribution, number, and shape of the cloud, and what implications this may have for future breakup debris models. We shall conclude the paper with a discussion how this measurement process can be improved for future breakups

    Characterization of the 2012-044C Briz-M Upper Stage Breakup

    Get PDF
    On 6 August, 2012, Russia launched two commercial satellites aboard a Proton rocket, and attempted to place them in geosynchronous orbit using a Briz-M upper stage (2012-044C, SSN 38746). Unfortunately, the upper stage failed early in its burn and was left stranded in an elliptical orbit with a perigee in low Earth orbit (LEO). Because the stage failed with much of its fuel on board, it was deemed a significant breakup risk. These fears were confirmed when it broke up 16 October, creating a large cloud of debris with perigees below that of the International Space Station. The debris cloud was tracked by the US Space Surveillance Network (SSN), which can reliably detect and track objects down to about 10 cm in size. Because of the unusual geometry of the breakup, there was an opportunity for NASA Orbital Debris Program Office to use specialized radar assets to characterize the extent of the debris cloud in sizes smaller than the standard debris tracked by the SSN. This paper will describe the observation campaign to measure the small particle distributions of this cloud, and presents the results of the analysis of the data. We shall compare the data to the modelled size distribution, number, and shape of the cloud, and what implications this may have for future breakup debris models. We shall conclude the paper with a discussion how this measurement process can be improved for future breakups

    GEO Population Estimates using Optical Survey Data

    Get PDF
    Optical survey data taken using the NASA Michigan Orbital Debris Survey Telescope (MODEST) gives us an opportunity to statistically sample faint object population in the Geosynchronous (GEO) and near-GEO environment. This paper will summarize the MODEST survey work that has been conducted by NASA since 2002, and will outline the techniques employed to arrive at the current population estimates in the GEO environment for dim objects difficult to detect and track using current systems in the Space Surveillance Network (SSN). Some types of orbits have a higher detection rate based on what parts of the GEO belt is being observed, a straightforward statistical technique is used to debias these observations to arrive at an estimate of the total population potentially visible to the telescope. The size and magnitude distributions of these fainter debris objects are markedly different from the catalogued population. GEO debris consists of at least two different populations, one which follows the standard breakup power law and one which has anomalously high Area-to-Mass Ratios (1 to approx. 30 square meters per kilogram; a sheet of paper = approx. 13 square meters per kilogram). The Inter-Agency Space Debris Coordination Committee (IADC) is investigating objects in GEO orbits with anomalously high Area-to-Mass Ratios (AMRs). The ESA Space Debris Telescope discovered this population and has and its properties of inclinations (0 to 30 degrees), changing eccentricities (0 and 0.6), and mean motions (approx. 1 rev), will be presented. The accepted interpretation of this orbital behavior is that solar radiation pressure drives the perturbations causing time varying inclinations and eccentricities. The orbital parameters are unstable for this population and thus difficult to predict. Their dim visual magnitudes and photometric variability make observations a challenge. The IADC has enlisted a series of observatories (participating institutions: University of Michigan/CTIO, Astronomical Institute University of Bern, Boeing LTS / AMOS, Keldysh Institute of Applied Mathematics) at different longitudes. Complete observational coverage over periods of days to months will provide a better understanding of the properties, such as solar radiation pressure effects on orbital elements, size, shape, attitude, color variations, and spectral characteristics. Results from recent observational programs will be summarized, and includes a description of the orbit elements prediction processes, a summary of the metric tracking performance, and some photometric characteristics of this class of debris

    FORVAL: A computer program for FORest VALuation

    Get PDF
    FORVAL (FORest VALuation) is a computer program for cash-flow analysis of forestry investments. The FORTRAN 77 program is available from the MAFES Forestry Department for Data General computers using the Advanced Operating System with Virtual Storage, and for IBM-compatible personal computers (send letter of request and 51!.-inch diskette to P.O. Drawer FR, Mississippi State, MS 39762)

    Operational and Technical Updates to the Object Reentry Survival Analysis Tool

    Get PDF
    The Object Reentry Survival Analysis Tool (ORSAT) has been used in the NASA Orbital Debris Program Office for over 25 years to estimate risk due to uncontrolled reentry of spacecraft and rocket bodies. Development over the last 3 years has included: a major change to the treatment of carbon fiber- and glass fiber-reinforced plastics (CFRP and GFRP, respectively); an updated atmospheric model; a new model for computing casualty area around an impacting debris object; and a newly-implemented scheme to determine the breakup altitude of a reentry object. Software also was written to automatically perform parameter sweeps in ORSAT to allow for uncertainty quantification and sensitivity analysis for components with borderline demisability. These updates have improved the speed and fidelity of the reentry analysis performed using ORSAT, and have allowed for improved engineering understanding by estimating the uncertainty for each components survivability. A statistical model for initial conditions captures the latitude bias in population density, a large improvement over the previous inclination-based latitude-averaged models. A sample spacecraft has been analyzed with standard techniques using ORSAT 6.2.1 and again using all the updated models; we will demonstrate the variation in the total debris casualty area and overall expectation of casualty

    The NASA Orbital Debris Engineering Model 3.1: Development, Verification, and Validation

    Get PDF
    The NASA Orbital Debris Program Office has developed the Orbital Debris Engineering Model (ORDEM) primarily as a tool for spacecraft designers and other users to understand the long-term risk of collisions with orbital debris. The newest version, ORDEM 3.1, incorporates the latest and highest fidelity datasets available to build and validate representative orbital debris populations encompassing low Earth orbit (LEO) to geosynchronous orbit (GEO) altitudes for the years 2016-2050. ORDEM 3.1 models fluxes for object sizes > 10 m within or transiting LEO and > 10 cm in GEO. The deterministic portion of the populations in ORDEM 3.1 is based on the U.S. Space Surveillance Network (SSN) catalog, which provides coverage down to approximately 10 cm in LEO and 1 m in GEO. Observational datasets from radar, in situ, and optical sources provide a foundation from which the model populations are statistically extrapolated to smaller sizes and orbit regions that are not well-covered by the SSN catalog, yet may pose the greatest threat to operational spacecraft. Objects in LEO ranging from approximately 5 mm to 10 cm are modeled using observational data from ground-based radar, namely the Haystack Ultrawideband Satellite Imaging Radar (HUSIR formerly known as Haystack). The LEO population smaller than approximately 3 mm in size is characterized based on a reanalysis of in situ data from impacts to the windows and radiators of the U.S. Space Transportation System orbiter vehicle, i.e., the Space Shuttle. Data from impacts on the Hubble Space Telescope are also used to validate the sub-millimeter model populations in LEO. Debris in GEO with sizes ranging from 10 cm to 1 m is modeled using optical measurement data from the Michigan Orbital DEbris Survey Telescope (MODEST). Specific, major debris-producing events, including the Fengyun-1C, Iridium 33, and Cosmos 2251 debris clouds, and unique populations, such as sodium-potassium droplets, have been re-examined and are modeled and added to the ORDEM environment separately. The debris environment greater than 1 mm is forecast using NASAs LEO-to- GEO ENvironment Debris model (LEGEND). Future explosions of intact objects and collisions involving objects greater than 10 cm are assessed statistically, and the NASA Standard Satellite Breakup Model is used to generate fragments from these events. Fragments smaller than 10 cm are further differentiated based on material density categories, i.e., high-, medium-, and low-density, to better characterize the potential debris risk posed to spacecraft. The future projection of the sub-millimeter environment is computed using a special small-particle degradation model where small particles are created from intact spacecraft and rocket bodies. This work discusses the development, features, and capabilities of the ORDEM 3.1 model; the ne new data analyses used to build the model populations; and sample verification and validation results

    Derivation and Application of a Global Albedo yielding an Optical Brightness To Physical Size Transformation Free of Systematic Errors

    Get PDF
    Orbital object data acquired via optical telescopes can play a crucial role in accurately defining the space environment. Radar systems probe the characteristics of small debris by measuring the reflected electromagnetic energy from an object of the same order of size as the wavelength of the radiation. This signal is affected by electrical conductivity of the bulk of the debris object, as well as its shape and orientation. Optical measurements use reflected solar radiation with wavelengths much smaller than the size of the objects. Just as with radar, the shape and orientation of an object are important, but we only need to consider the surface electrical properties of the debris material (i.e., the surface albedo), not the bulk electromagnetic properties. As a result, these two methods are complementary in that they measure somewhat independent physical properties to estimate the same thing, debris size. Short arc optical observations such as are typical of NASA's Liquid Mirror Telescope (LMT) give enough information to estimate an Assumed Circular Orbit (ACO) and an associated range. This information, combined with the apparent magnitude, can be used to estimate an "absolute" brightness (scaled to a fixed range and phase angle). This absolute magnitude is what is used to estimate debris size. However, the shape and surface albedo effects make the size estimates subject to systematic and random errors, such that it is impossible to ascertain the size of an individual object with any certainty. However, as has been shown with radar debris measurements, that does not preclude the ability to estimate the size distribution of a number of objects statistically. After systematic errors have been eliminated (range errors, phase function assumptions, photometry) there remains a random geometric albedo distribution that relates object size to absolute magnitude. Measurements by the LMT of a subset of tracked debris objects with sizes estimated from their radar cross sections indicate that the random variations in the albedo follow a log-normal distribution quite well. In addition, this distribution appears to be independent of object size over a considerable range in size. Note that this relation appears to hold for debris only, where the shapes and other properties are not primarily the result of human manufacture, but of random processes. With this information in hand, it now becomes possible to estimate the actual size distribution we are sampling from. We have identified two characteristics of the space debris population that make this process tractable and by extension have developed a methodology for performing the transformation
    • …
    corecore