26 research outputs found

    Structural models of the different trimers present in the core of phycobilisomes from <i>Gracilaria chilensis</i> based on crystal structures and sequences

    Get PDF
    Phycobilisomes (PBS) are accessory light harvesting protein complexes that directionally transfer energy towards photosystems. Phycobilisomes are organized in a central core and rods radiating from it. Components of phycobilisomes in Gracilaria chilensis (Gch) are Phycobiliproteins (PBPs), Phycoerythrin (PE), and Phycocyanin (PC) in the rods, while Allophycocyanin (APC) is found in the core, and linker proteins (L). The function of such complexes depends on the structure of each component and their interaction. The core of PBS from cyanobacteria is mainly composed by cylinders of trimers of α and β subunits forming heterodimers of Allophycocyanin, and other components of the core including subunits αII and β18. As for the linkers, Linker core (LC) and Linker core membrane (LCM) are essential for the final emission towards photoreaction centers. Since we have previously focused our studies on the rods of the PBS, in the present article we investigated the components of the core in the phycobilisome from the eukaryotic algae, Gracilaria chilensis and their organization into trimers. Transmission electron microscopy provided the information for a three cylinders core, while the three dimensional structure of Allophycocyanin purified from Gch was determined by X-ray diffraction method and the biological unit was determined as a trimer by size exclusion chromatography. The protein sequences of all the components of the core were obtained by sequencing the corresponding genes and their expression confirmed by transcriptomic analysis. These subunits have seldom been reported in red algae, but not in Gracilaria chilensis. The subunits not present in the crystallographic structure were modeled to build the different composition of trimers. This article proposes structural models for the different types of trimers present in the core of phycobilisomes of Gch as a first step towards the final model for energy transfer in this system

    Refolding by disulfide isomerization - the mixed disulfide between ribonuclease t-1 and glutathione as a model refolding substrate

    No full text
    Protein folding, associated with isomerization of disulfide bonds, was studied using the mixed disulfide between glutathione and reduced ribonuclease T-1 (GS-RNase T-1) as a stable soluble and homogenous starting material; conditions were selected to model those within the lumen of the endoplasmic reticulum where native disulfide bonds are formed in protein biosynthesis, Folding was initiated by addition of free glutathione (GSH +/- GSSG) to promote thiol-disulfide interchange and was monitored by intrinsic protein fluorescence, appearance of native ribonuclease activity, HPLC, and nonreducing SDS-PAGE, All the analyses indicated that native RNase T-1 was recovered in high yield in a variety of redox conditions, Appearance of native activity followed first-order kinetics; kinetic analysis of the intrinsic fluorescence changes indicated an additional rapid process in some conditions, interpreted as the formation of a nonnative intermediate state. Analysis by HPLC and SDS-PAGE also indicated the formation of transient intermediates. In 1.5 M NaCl, GS-RNase T-1 adopts a compact native-like conformation; refolding by thiol-disulfide interchange in these conditions was accelerated approximately 2-fold, Refolding of GS-RNase T-1 was catalyzed by protein disulfide isomerase (PDI); substoichiometric quantities of PDI accelerated refolding several-fold. GS-RNase T-1 refolding was inhibited by BiP; refolding was completely blocked in presence of a 5-fold molar excess of BiP, and the yield of refolding was substantially reduced by equimolar concentrations of BiP; the refolding was then restored by the addition of ATP, GS-RNase T-1 is a convenient model substrate for studying protein folding linked to native disulfide formation in conditions comparable to those within the lumen of the endoplasmic reticulum
    corecore