35 research outputs found

    CHARA/MIRC-X: A high-sensitive six telescope interferometric imager concept, commissioning and early science

    Get PDF
    This is the final version. Available from SPIE via the DOI in this recordSPIE Astronomical Telescopes + Instrumentation conference 2020. Online OnlyMIRC-X is a six telescope beam combiner at the CHARA array that works in J and H wavelength bands and provides an angular resolution equivalent to a B=331m diameter telescope. The legacy MIRC combiner has delivered outstanding results in the fields of stellar astrophysics and binaries. However, we required higher sensitivity to make ambitious scientific measurements of faint targets such as young stellar objects, binary systems with exoplanets, and active galactic nuclei. For that purpose, MIRC-X is built and is offered to the community since mid-2017. MIRC-X has demonstrated up to two magnitudes of improved faint magnitude sensitivity with the best-case H <= 8. Here we present a review of the instrument and present early science results, and highlight some of our ongoing science programs.National Science Foundation (NSF)NASAScience and Technology Facilities Council (STFC)Michigan Space Grant Consortiu

    MYSTIC: a high angular resolution K-band imager at CHARA

    Get PDF
    This is the final version. Available on open access from SPIE via the DOI in this recordData, Materials, and Code Availability: The data reduction pipeline is available at https://gitlab.chara.gsu.edu/lebouquj/mircx_pipeline/Much of this manuscript originally appeared in SPIE Proceedings Volume 12183, Optical and Infrared Interferometry and Imaging VIII; 121830B (2022) https://doi.org/10.1117/12.2629437; available in ORE at http://hdl.handle.net/10871/131161The Michigan Young Star Imager at CHARA (MYSTIC) is a K-band interferometric beam combining instrument funded by the U.S. National Science Foundation, designed primarily for imaging sub-au scale disk structures around nearby young stars and to probe the planet formation process. Installed at the CHARA Array in July 2021, with baselines up to 331 m, MYSTIC provides a maximum angular resolution of λ / 2B ∌ 0.7 mas. The instrument injects phase-corrected light from the array into inexpensive, single-mode, polarization maintaining silica fibers, which are then passed via a vacuum feedthrough into a cryogenic dewar operating at 220 K for imaging. MYSTIC uses a high frame rate, ultra-low read noise SAPHIRA detector and implements two beam combiners: a six-telescope image plane beam combiner, based on the MIRC-X design, for targets as faint as 7.7 Kmag, as well as a four-telescope integrated optic beam-combiner mode using a spare chip leftover from the GRAVITY instrument. MYSTIC is co-phased with the MIRC-X (J + H band) instrument for simultaneous fringe-tracking and imaging and shares its software suite with the latter to allow a single observer to operate both instruments. We present the instrument design, review its operational performance, present early commissioning science observations, and propose upgrades to the instrument that could improve its K-band sensitivity to 10th magnitude in the near future.USA National Science Foundation Advanced Technologies and Instrumentation ProgramEuropean Union Horizon 2020NASA-XRPNSF-ASTNASA-MSGCNASAEuropean Research Council (ERC)Science and Technology Facilities Council (STFC

    CHARA array adaptive optics: Complex operational software and performance

    Get PDF
    This is the final version. Available from SPIR via the DOI in this recordSPIE Astronomical Telescopes + Instrumentation conference, 14 - 18 December 2020, Online OnlyThe CHARA Array is the longest baseline optical interferometer in the world. Operated with natural seeing, it has delivered landmark sub-milliarcsecond results in the areas of stellar imaging, binaries, and stellar diameters. However, to achieve ambitious observations of faint targets such as young stellar objects and active galactic nuclei, higher sensitivity is required. For that purpose, adaptive optics are developed to correct atmospheric turbulence and non-common path aberrations between each telescope and the beam combiner lab. This paper describes the AO software and its integration into the CHARA system. We also report initial on-sky tests that demonstrate an increase of scientific throughput by sensitivity gain and by extending useful observing time in worse seeing conditions. Our 6 telescopes and 12 AO systems with tens of critical alignments and control loops pose challenges in operation. We describe our methods enabling a single scientist to operate the entire system.GSU College of Arts and SciencesGSU Office of the Vice President for Research and Economic Developmen

    Surface-Initiated Polymer Brushes in the Biomedical Field: Applications in Membrane Science, Biosensing, Cell Culture, Regenerative Medicine and Antibacterial Coatings

    Get PDF

    Drying stresses in cellulose nanocrystal coatings: Impact of molecular and macromolecular additives

    No full text
    | openaire: EC/H2020/788489/EU//BioELCell Funding Information: We acknowledge funding support by the European Research Council under the advanced grant 788489 BioElCell. Luiz G. Greca & Karl Mihhels acknowledge funding from Aalto University School of Chemical Engineering and Konrad W. Klockars acknowledges funding from the Walter Ahlström Foundation . We acknowledge the support by Aalto University at OtaNano — Nanomicroscopy Center (Aalto-NMC). The authors are also grateful for the support of the Academy of Finland through its Centres of Excellence Programme (2014–2019) under Project 264677 “Molecular Engineering of Biosynthetic Hybrid Materials Research” (HYBER). We thank Prof. Olli Ikkala for his insightful comments. BLT is the recipient of the Khalifa University of Science and Technology (KUST) Faculty Startup Project (Project code: 84741140-FSU-2022-021 ). Publisher Copyright: © 2022The industrial implementation of cellulose nanocrystals (CNCs) in films and coatings requires thorough evaluation of the internal stresses post-consolidation, as they cause fracturing and peeling. Characterizing the impact of plasticizing additives on stress is therefore critical. Herein, we use the deflection of thin glass substrates to measure drying stresses in consolidating CNC films, and benchmark the impact of five additives (glucose, glycerol, poly(ethylene glycol) (PEG), poly(vinyl alcohol) (PVA) and bovine serum albumin). Glycerol and PEG reduced drying stresses effectively, while PEG of increased molecular weight (from 0.2 to 10 kDa), PVA, and BSA were less effective. We analyzed the temporal aspects of the process, where stress relaxation of up to 30 % was observed 2 years after coating formation. Finally, we provide a framework to evaluate the impact of CNC morphology on residual stresses. The introduced approach is expected to fast-track the optimization and implementation of coatings based on biocolloids.Peer reviewe

    Controlling the Nematic Liquid Crystallinity of Cellulose Nanocrystals with an Alcohol Ethoxy Sulfonate Surfactant

    No full text
    International audienceCellulose nanocrystals (CNCs) are biobased colloidal nanorods that have unlocked new opportunities in the area of sustainable functional nanomaterials including structural films and coatings, biomedical devices, energy, sensing, and composite materials. While selective light reflection and sensing develop from the typical chiral nematic (cholesteric, Nem*) liquid crystallinity exhibited by CNCs, a wealth of technologies would benefit from a nematic liquid crystal (LC) with CNC uniaxial alignment. Therefore, this study answers the central question of whether surfactant complexation suppresses CNC chirality in favor of nematic lyotropic and thermotropic liquid crystallinity. Therein, we use a common surfactant having both nonionic and anionic blocks, namely, oligo(ethylene glycol) alkyl-3-sulfopropyl diether potassium salt (an alcohol ethoxy sulfonate (AES)). AES forms complexes with CNCs in toluene (a representative for nonpolar organic solvent) via hydrogen bonding with an AES’ oligo(ethylene glycol) block. A sufficiently high AES weight fraction endows the dispersibility of CNC in toluene. Lyotropic liquid crystallinity with Schlieren textures containing two- and four-point brush defects is observed in polarized optical microscopy (POM), along with the suppression of the cholesteric fingerprint textures. The results suggest a nematic (Nem) phase in toluene. Moreover, thermotropic liquid crystallinity is observed by incorporating an excess of AES, in the absence of an additional solvent and upon mild heating. The Schlieren textures suggest a nematic system that undergoes uniaxial alignment under mild shear. Importantly, replacing AES with a corresponding nonionic surfactant does not lead to liquid crystalline properties, suggesting electrostatic structural control of the charged end group of AES. Overall, we introduce a new avenue to suppress CNC chirality to achieve nematic structures, which resolves the long-sought uniaxial alignment of CNCs in filaments, composite materials, and optical devices

    Chirality from Cryo-Electron Tomograms of Nanocrystals Obtained by Lateral Disassembly and Surface Etching of Never-Dried Chitin

    No full text
    | openaire: EC/H2020/788489/EU//BioELCellThe complex nature of typical colloids and corresponding interparticle interactions pose a challenge in understanding their self-assembly. This specifically applies to biological nanoparticles, such as those obtained from chitin, which typically are hierarchical and multidimensional. In this study, we obtain chitin nanocrystals by one-step heterogeneous acid hydrolysis of never-dried crab residues. Partial deacetylation facilitates control over the balance of electrostatic charges (ζ-potential in the range between +58 and +75 mV) and therefore affords chitin nanocrystals (DE-ChNC) with axial aspect (170-350 nm in length), as determined by cryogenic transmission electron microscopy and atomic force microscopy. We find that the surface amines generated by deacetylation, prior to hydrolysis, play a critical role in the formation of individual chitin nanocrystals by the action of a dual mechanism. We directly access the twisting feature of chitin nanocrystals using electron tomography (ET) and uncover the distinctive morphological differences between chitin nanocrystals extracted from nondeacetylated chitin, ChNC, which are bundled and irregular, and DE-ChNC (single, straight nanocrystals). Whereas chitin nanocrystals obtained from dried chitin precursors are known to be twisted and form chiral nematic liquid crystals, our ET measurements indicate no dominant twisting or handedness for the nanocrystals obtained from the never-dried source. Moreover, no separation into typical isotropic and anisotropic phases occurs after 2 months at rest. Altogether, we highlight the critical role of drying the precursors or the nanopolysaccharides to develop chirality.Peer reviewe

    Chitin-amyloid synergism and their use as sustainable structural adhesives

    No full text
    | openaire: EC/H2020/788489/EU//BioELCellStructural adhesives are relevant to many engineering applications, especially those requiring load-bearing joints with high lap shear strength. Typical adhesives are synthesized from acrylics, epoxies, or urethanes, which may pose a burden to sustainability and the environment. In nature, the interfacial interactions between chitin and proteins are used for structural purposes and as a bio-cement, resulting in materials with properties unmatched by their man-made counterparts. Herein, we show that related supramolecular interactions can be harnessed to develop high strength green adhesives based on chitin nanocrystals (ChNCs), isolated from shrimp shells, and hen egg white lysozyme (HEWL) used in its monomeric or amyloid forms. Consolidation of the bicomponent suspensions, placed between glass substrates, results in long-range ordered superstructures. The formation of these structures is evaluated by surface energy considerations, followed by scanning electron, atomic force, and polarized microscopies of theconsolidated materials. For 0.8 mg of bio-adhesive (lysozyme, ChNCs or their composites), lap shear loads of over 300 N are reached. Such remarkable adhesion reaches maximum values at protein-to-ChNC ratios below 1 : 4, reflecting the synergy established between the components (ca. 25% higher load compared to ChNCs, the strongest single component). We put the observed adhesive performance in perspective by comparing the lap-shear performance with current research on green supramolecular adhesives using natural biopolymers. The results are discussed in the context of current efforts to standardize the measurement of adhesive strength and bond preparation. The latter is key to formalizing the metrology and materials chemistry of bio-based adhesives. The proposed all-green system is expected to expand current developments in the design of bio-based adhesives.Peer reviewe

    Stereochemistry-dependent thermotropic liquid crystalline phases of monosaccharide-based amphiphiles

    No full text
    Conformational rigidity controls the bulk self-assembly and liquid crystallinity from amphiphilic block molecules to copolymers. The effects of block stereochemistry on the self-assembly have, however, been less explored. Here, we have investigated amphiphilic block molecules involving eight open-chain monosaccharide-based polyol units possessing different stereochemistries, derived from D-glucose, D-galactose, L-arabinose, D-mannose and L-rhamnose (allylated monosaccharides t-Glc*, e-Glc*, t-Gal*, e-Gal*, t-Ara*, e-Ara*, t-Man*, and t-Rha*), end-functionalized with repulsive tetradecyl alkyl chain blocks to form well-defined amphiphiles with block molecule structures. All compounds studied showed low temperature crystalline phases due to polyol crystallization, and smectic (lamellar) and isotropic phases upon heating in bulk. Hexagonal cylindrical phase was additionally observed for the composition involving t-Man*. Cubic phases were observed for e-Glc*, e-Gal*, e-Ara*, and t-Rha* derived compounds. Therein, the rich array of WAXS-reflections suggested that the crystalline polyol domains are not ultra-confined in spheres as in classic cubic phases but instead show network-like phase continuity, which is rare in bulk liquid crystals. Importantly, the transition temperatures of the self-assemblies were observed to depend strongly on the polyol stereochemistry. The findings underpin that the stereochemistry in carbohydrate-based assemblies involves complexity, which is an important parameter to be considered in material design when developing self-assemblies for different functions.peerReviewe
    corecore