177 research outputs found

    Cytokinesis in bloodstream stage Trypanosoma brucei requires a family of katanins and spastin

    Get PDF
    Microtubule severing enzymes regulate microtubule dynamics in a wide range of organisms and are implicated in important cell cycle processes such as mitotic spindle assembly and disassembly, chromosome movement and cytokinesis. Here we explore the function of several microtubule severing enzyme homologues, the katanins (KAT80, KAT60a, KAT60b and KAT60c), spastin (SPA) and fidgetin (FID) in the bloodstream stage of the African trypanosome parasite, Trypanosoma brucei. The trypanosome cytoskeleton is microtubule based and remains assembled throughout the cell cycle, necessitating its remodelling during cytokinesis. Using RNA interference to deplete individual proteins, we show that the trypanosome katanin and spastin homologues are non-redundant and essential for bloodstream form proliferation. Further, cell cycle analysis revealed that these proteins play essential but discrete roles in cytokinesis. The KAT60 proteins each appear to be important during the early stages of cytokinesis, while downregulation of KAT80 specifically inhibited furrow ingression and SPA depletion prevented completion of abscission. In contrast, RNA interference of FID did not result in any discernible effects. We propose that the stable microtubule cytoskeleton of T. brucei necessitates the coordinated action of a family of katanins and spastin to bring about the cytoskeletal remodelling necessary to complete cell divisio

    Self-affirmation reduces the socioeconomic attainment gap in schools in England

    Get PDF
    Background. Studies in the USA show that school students from some ethnic backgrounds are susceptible to stereotype threat, that this undermines their academic performance, and that a series of virtually zero-cost self-affirmation writing exercises can reduce these adverse effects. In England, however, socioeconomic status (SES) is a much stronger predictor of academic success than is ethnic background. Aims. This study investigates whether self-affirmation writing exercises can help close the SES attainment gap in England by increasing the academic performance of low-SES (but not higher-SES) school students. Sample. Our sample consisted of students aged 11-14 in a secondary school in southern England (N = 562); of these, 128 were eligible for free school meals, a proxy for low SES. Methods. Students completed three short writing exercises throughout one academic year: those randomly assigned to an affirmed condition wrote about values that were important to them, and those assigned to a control condition wrote about a neutral topic. Results. On average, the low-SES students had lower academic performance and reported experiencing more stereotype threat than their higher-SES peers. The selfaffirmation raised the academic performance of the low-SES students by 0.38 standard deviations but did not significantly affect the performance of the higher-SES students, thus reducing the SES performance gap by 62%. The self-affirmation also reduced the level of stress reported by the low-SES school students. Conclusions. The benefits of this virtually zero-cost intervention compare favorably with those of other interventions targeting the SES academic attainment gap

    A functional alternative splicing mutation in human tryptophan hydroxylase-2

    Get PDF
    The brain serotonergic system has an essential role in the physiological functions of the central nervous system and dysregulation of serotonin (5-HT) homeostasis has been implicated in many neuropsychiatric disorders. The tryptophan hydroxylase-2 (TPH2) gene is the rate-limiting enzyme in brain 5-HT synthesis, and thus is an ideal candidate gene for understanding the role of dysregulation of brain serotonergic homeostasis. Here, we characterized a common, but functional single-nucleotide polymorphism (SNP rs1386493) in the TPH2 gene, which decreases efficiency of normal RNA splicing, resulting in a truncated TPH2 protein (TPH2-TR) by alternative splicing. TPH2-TR, which lacks TPH2 enzyme activity, dominant-negatively affects full-length TPH2 function, causing reduced 5-HT production. The predicted mRNA for TPH2-TR is present in postmortem brain of rs1386493 carriers. The rs13864923 variant does not appear to be overrepresented in either global or multiplex depression cohorts. However, in combination with other gene variants linked to 5-HT homeostasis, this variant may exhibit important epistatic influences

    Developmental expression of COE across the Metazoa supports a conserved role in neuronal cell-type specification and mesodermal development

    Get PDF
    The transcription factor COE (collier/olfactory-1/early B cell factor) is an unusual basic helix–loop–helix transcription factor as it lacks a basic domain and is maintained as a single copy gene in the genomes of all currently analysed non-vertebrate Metazoan genomes. Given the unique features of the COE gene, its proposed ancestral role in the specification of chemosensory neurons and the wealth of functional data from vertebrates and Drosophila, the evolutionary history of the COE gene can be readily investigated. We have examined the ways in which COE expression has diversified among the Metazoa by analysing its expression from representatives of four disparate invertebrate phyla: Ctenophora (Mnemiopsis leidyi); Mollusca (Haliotis asinina); Annelida (Capitella teleta and Chaetopterus) and Echinodermata (Strongylocentrotus purpuratus). In addition, we have studied COE function with knockdown experiments in S. purpuratus, which indicate that COE is likely to be involved in repressing serotonergic cell fate in the apical ganglion of dipleurula larvae. These analyses suggest that COE has played an important role in the evolution of ectodermally derived tissues (likely primarily nervous tissues) and mesodermally derived tissues. Our results provide a broad evolutionary foundation from which further studies aimed at the functional characterisation and evolution of COE can be investigated

    No iron fertilization in the equatorial Pacific Ocean during the last ice age

    Get PDF
    The equatorial Pacific Ocean is one of the major high-nutrient, low-chlorophyll regions in the global ocean. In such regions, the consumption of the available macro-nutrients such as nitrate and phosphate is thought to be limited in part by the low abundance of the critical micro-nutrient iron1. Greater atmospheric dust deposition2 could have fertilized the equatorial Pacific with iron during the last ice age—the Last Glacial Period (LGP) but the effect of increased ice-age dust fluxes on primary productivity in the equatorial Pacific remains uncertain. Here we present meridional transects of dust (derived from the 232Th proxy), phytoplankton productivity (using opal, 231Pa/230Th and excess Ba), and the degree of nitrate consumption (using foraminifera-bound δ15N) from six cores in the central equatorial Pacific for the Holocene (0–10,000 years ago) and the LGP (17,000–27,000 years ago). We find that, although dust deposition in the central equatorial Pacific was two to three times greater in the LGP than in the Holocene, productivity was the same or lower, and the degree of nitrate consumption was the same. These biogeochemical findings suggest that the relatively greater ice-age dust fluxes were not large enough to provide substantial iron fertilization to the central equatorial Pacific. This may have been because the absolute rate of dust deposition in the LGP (although greater than the Holocene rate) was very low. The lower productivity coupled with unchanged nitrate consumption suggests that the subsurface major nutrient concentrations were lower in the central equatorial Pacific during the LGP. As these nutrients are today dominantly sourced from the Subantarctic Zone of the Southern Ocean, we propose that the central equatorial Pacific data are consistent with more nutrient consumption in the Subantarctic Zone, possibly owing to iron fertilization as a result of higher absolute dust fluxes in this region7,8. Thus, ice-age iron fertilization in the Subantarctic Zone would have ultimately worked to lower, not raise, equatorial Pacific productivity

    Development of a nurse home visitation intervention for intimate partner violence

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite an increase in knowledge about the epidemiology of intimate partner violence (IPV), much less is known about interventions to reduce IPV and its associated impairment. One program that holds promise in preventing IPV and improving outcomes for women exposed to violence is the Nurse-Family Partnership (NFP), an evidence-based nurse home visitation program for socially disadvantaged first-time mothers. The present study developed an intervention model and modification process to address IPV within the context of the NFP. This included determining the extent to which the NFP curriculum addressed the needs of women at risk for IPV or its recurrence, along with client, nurse and broader stakeholder perspectives on how best to help NFP clients cope with abusive relationships.</p> <p>Methods</p> <p>Following a preliminary needs assessment, an exploratory multiple case study was conducted to identify the core components of the proposed IPV intervention. This included qualitative interviews with purposeful samples of NFP clients and community stakeholders, and focus groups with nurse home visitors recruited from four NFP sites. Conventional content analysis and constant comparison guided data coding and synthesis. A process for developing complex interventions was then implemented.</p> <p>Results</p> <p>Based on data from 69 respondents, an IPV intervention was developed that focused on identifying and responding to IPV; assessing a client's level of safety risk associated with IPV; understanding the process of leaving and resolving an abusive relationship and system navigation. A need was identified for the intervention to include both universal elements of healthy relationships and those tailored to a woman's specific level of readiness to promote change within her life. A clinical pathway guides nurses through the intervention, with a set of facilitators and corresponding instructions for each component.</p> <p>Conclusions</p> <p>NFP clients, nurses and stakeholders identified the need for modifications to the existing NFP program; this led to the development of an intervention that includes universal and targeted components to assist NFP nurses in addressing IPV with their clients. Plans for feasibility testing and evaluation of the effectiveness of the IPV intervention embedded within the NFP, and compared to NFP-only, are discussed.</p

    MiR-133a in Human Circulating Monocytes: A Potential Biomarker Associated with Postmenopausal Osteoporosis

    Get PDF
    Background: Osteoporosis mainly occurs in postmenopausal women, which is characterized by low bone mineral density (BMD) due to unbalanced bone resorption by osteoclasts and formation by osteoblasts. Circulating monocytes play important roles in osteoclastogenesis by acting as osteoclast precursors and secreting osteoclastogenic factors, such as IL-1, IL-6 and TNF-a. MicroRNAs (miRNAs) have been implicated as important biomarkers in various diseases. The present study aimed to find significant miRNA biomarkers in human circulating monocytes underlying postmenopausal osteoporosis. Methodology/Principal Findings: We used ABI TaqManH miRNA array followed by qRT-PCR validation in circulating monocytes to identify miRNA biomarkers in 10 high and 10 low BMD postmenopausal Caucasian women. MiR-133a was upregulated (P = 0.007) in the low compared with the high BMD groups in the array analyses, which was also validated by qRT-PCR (P = 0.044). We performed bioinformatic target gene analysis and found three potential osteoclast-related target genes, CXCL11, CXCR3 and SLC39A1. In addition, we performed Pearson correlation analyses between the expression levels of miR-133a and the three potential target genes in the 20 postmenopausal women. We did find negative correlations between miR-133a and all the three genes though not significant. Conclusions/Significance: This is the first in vivo miRNA expression analysis in human circulating monocytes to identif
    corecore