539 research outputs found

    Quasi-periodic Fast-mode Wave Trains Within a Global EUV Wave and Sequential Transverse Oscillations Detected by SDO/AIA

    Get PDF
    We present the first unambiguous detection of quasi-periodic wave trains within the broad pulse of a global EUV wave (so-called "EIT wave") occurring on the limb. These wave trains, running ahead of the lateral CME front of 2-4 times slower, coherently travel to distances >Rsun/2>R_{sun}/2 along the solar surface, with initial velocities up to 1400 km/s decelerating to ~650 km/s. The rapid expansion of the CME initiated at an elevated height of 110 Mm produces a strong downward and lateral compression, which may play an important role in driving the primary EUV wave and shaping its front forwardly inclined toward the solar surface. The waves have a dominant 2 min periodicity that matches the X-ray flare pulsations, suggesting a causal connection. The arrival of the leading EUV wave front at increasing distances produces an uninterrupted chain sequence of deflections and/or transverse (likely fast kink mode) oscillations of local structures, including a flux-rope coronal cavity and its embedded filament with delayed onsets consistent with the wave travel time at an elevated (by ~50%) velocity within it. This suggests that the EUV wave penetrates through a topological separatrix surface into the cavity, unexpected from CME caused magnetic reconfiguration. These observations, when taken together, provide compelling evidence of the fast-mode MHD wave nature of the {\it primary (outer) fast component} of a global EUV wave, running ahead of the {\it secondary (inner) slow} component of CME-caused restructuring.Comment: 17 pages, 12 figures; accepted by ApJ, April 24, 201

    An Interface Region Imaging Spectrograph first view on Solar Spicules

    Full text link
    Solar spicules have eluded modelers and observers for decades. Since the discovery of the more energetic type II, spicules have become a heated topic but their contribution to the energy balance of the low solar atmosphere remains unknown. Here we give a first glimpse of what quiet Sun spicules look like when observed with NASA's recently launched Interface Region Imaging Spectrograph (IRIS). Using IRIS spectra and filtergrams that sample the chromosphere and transition region we compare the properties and evolution of spicules as observed in a coordinated campaign with Hinode and the Atmospheric Imaging Assembly. Our IRIS observations allow us to follow the thermal evolution of type II spicules and finally confirm that the fading of Ca II H spicules appears to be caused by rapid heating to higher temperatures. The IRIS spicules do not fade but continue evolving, reaching higher and falling back down after 500-800 s. Ca II H type II spicules are thus the initial stages of violent and hotter events that mostly remain invisible in Ca II H filtergrams. These events have very different properties from type I spicules, which show lower velocities and no fading from chromospheric passbands. The IRIS spectra of spicules show the same signature as their proposed disk counterparts, reinforcing earlier work. Spectroheliograms from spectral rasters also confirm that quiet Sun spicules originate in bushes from the magnetic network. Our results suggest that type II spicules are indeed the site of vigorous heating (to at least transition region temperatures) along extensive parts of the upward moving spicular plasma.Comment: 6 pages, 4 figures, accepted for publication in ApJ Letters. For associated movies, see http://folk.uio.no/tiago/iris_spic

    Homologous Helical Jets: Observations by IRIS, SDO and Hinode and Magnetic Modeling with Data-Driven Simulations

    Full text link
    We report on observations of recurrent jets by instruments onboard the Interface Region Imaging Spectrograph (IRIS), Solar Dynamics Observatory (SDO) and Hinode spacecrafts. Over a 4-hour period on July 21st 2013, recurrent coronal jets were observed to emanate from NOAA Active Region 11793. FUV spectra probing plasma at transition region temperatures show evidence of oppositely directed flows with components reaching Doppler velocities of +/- 100 km/s. Raster Doppler maps using a Si IV transition region line show all four jets to have helical motion of the same sense. Simultaneous observations of the region by SDO and Hinode show that the jets emanate from a source region comprising a pore embedded in the interior of a supergranule. The parasitic pore has opposite polarity flux compared to the surrounding network field. This leads to a spine-fan magnetic topology in the coronal field that is amenable to jet formation. Time-dependent data-driven simulations are used to investigate the underlying drivers for the jets. These numerical experiments show that the emergence of current-carrying magnetic field in the vicinity of the pore supplies the magnetic twist needed for recurrent helical jet formation.Comment: 15 pages, 10 figures, accepted by Ap

    A Tale Of Two Spicules: The Impact of Spicules on the Magnetic Chromosphere

    Full text link
    We use high-resolution observations of the Sun in Ca II H 3968 A from the Solar Optical Telescope on Hinode to show that there are at least two types of spicules that dominate the structure of the magnetic solar chromosphere. Both types are tied to the relentless magnetoconvective driving in the photosphere, but have very different dynamic properties. ``Type-I'' spicules are driven by shock waves that form when global oscillations and convective flows leak into the upper atmosphere along magnetic field lines on 3-7 minute timescales. ``Type-II'' spicules are much more dynamic: they form rapidly (in ~10s), are very thin (<200km wide), have lifetimes of 10-150s (at any one height) and seem to be rapidly heated to (at least) transition region temperatures, sending material through the chromosphere at speeds of order 50-150 km/s. The properties of Type II spicules suggest a formation process that is a consequence of magnetic reconnection, typically in the vicinity of magnetic flux concentrations in plage and network. Both types of spicules are observed to carry Alfven waves with significant amplitudes of order 20 km/s.Comment: 8 pages, 5 figures, accepted for Hinode special issue of PAS

    High-resolution Observations of the Shock Wave Behavior for Sunspot Oscillations with the Interface Region Imaging Spectrograph

    Full text link
    We present the first results of sunspot oscillations from observations by the Interface Region Imaging Spectrograph. The strongly nonlinear oscillation is identified in both the slit-jaw images and the spectra of several emission lines formed in the transition region and chromosphere. We first apply a single Gaussian fit to the profiles of the Mgii 2796.35 {\AA}, Cii 1335.71 {\AA}, and Si iv 1393.76 {\AA} lines in the sunspot. The intensity change is about 30%. The Doppler shift oscillation reveals a sawtooth pattern with an amplitude of about 10 km/s in Si iv. In the umbra the Si iv oscillation lags those of Cii and Mgii by about 3 and 12 s, respectively. The line width suddenly increases as the Doppler shift changes from redshift to blueshift. However, we demonstrate that this increase is caused by the superposition of two emission components. We then perform detailed analysis of the line profiles at a few selected locations on the slit. The temporal evolution of the line core is dominated by the following behavior: a rapid excursion to the blue side, accompanied by an intensity increase, followed by a linear decrease of the velocity to the red side. The maximum intensity slightly lags the maximum blueshift in Si iv, whereas the intensity enhancement slightly precedes the maximum blueshift in Mgii. We find a positive correlation between the maximum velocity and deceleration, a result that is consistent with numerical simulations of upward propagating magnetoacoustic shock waves.Comment: 5 figures, in ApJ. Correction of time lags (correct values are 3 and 12s) made on June 17 201

    Vector spectropolarimetry of dark-cored penumbral filaments with Hinode

    Full text link
    We present spectropolarimetric measurements of dark-cored penumbral filaments taken with Hinode at a resolution of 0.3". Our observations demonstrate that dark-cored filaments are more prominent in polarized light than in continuum intensity. Far from disk center, the Stokes profiles emerging from these structures are very asymmetric and show evidence for magnetic fields of different inclinations along the line of sight, together with strong Evershed flows of at least 6-7 km/s. In sunspots closer to disk center, dark-cored penumbral filaments exhibit regular Stokes profiles with little asymmetries due to the vanishing line-of-sight component of the horizontal Evershed flow. An inversion of the observed spectra indicates that the magnetic field is weaker and more inclined in the dark cores as compared with the surrounding bright structures. This is compatible with the idea that dark-cored filaments are the manifestation of flux tubes carrying hot Evershed flows.Comment: Accepted for publication in ApJ Letters. Use the Postscript version for high quality figure

    Strategy for the inversion of Hinode spectropolarimetric measurements in the quiet Sun

    Full text link
    In this paper we propose an inversion strategy for the analysis of spectropolarimetric measurements taken by {\em Hinode} in the quiet Sun. The spectropolarimeter of the Solar Optical Telescope aboard {\em Hinode} records the Stokes spectra of the \ion{Fe}{i} line pair at 630.2 nm with unprecendented angular resolution, high spectral resolution, and high sensitivity. We discuss the need to consider a {\em local} stray-light contamination to account for the effects of telescope diffraction. The strategy is applied to observations of a wide quiet Sun area at disk center. Using these data we examine the influence of noise and initial guess models in the inversion results. Our analysis yields the distributions of magnetic field strengths and stray-light factors. They show that quiet Sun internetwork regions consist mainly of hG fields with stray-light contaminations of about 0.8.Comment: To appear in Publications of the Astronomical Society of Japan, 8 pages, 10 figure

    Disintegration of Magnetic Flux in Decaying Sunspots as Observed with the Hinode SOT

    Full text link
    Continuous observations of sunspot penumbrae with the Solar Optical Telescope aboard \textit{Hinode} clearly show that the outer boundary of the penumbra fluctuates around its averaged position. The penumbral outer boundary moves inward when granules appear in the outer penumbra. We discover that such granules appear one after another while moving magnetic features (MMFs) are separating from the penumbral ``spines'' (penumbral features that have stronger and more vertical fields than those of their surroundings). These granules that appear in the outer penumbra often merge with bright features inside the penumbra that move with the spines as they elongate toward the moat region. This suggests that convective motions around the penumbral outer boundary are related to the disintegration of magnetic flux in the sunspot. We also find that dark penumbral filaments frequently elongate into the moat region in the vicinity of MMFs that detach from penumbral spines. Such elongating dark penumbral filaments correspond to nearly horizontal fields extending from the penumbra. Pairs of MMFs with positive and negative polarities are sometimes observed along the elongating dark penumbral filaments. This strongly supports the notion that such elongating dark penumbral filaments have magnetic fields with a ``sea serpent''-like structure. Evershed flows, which are associated with the penumbral horizontal fields, may be related to the detachment of the MMFs from the penumbral spines, as well as to the formation of the MMFs along the dark penumbral filaments that elongate into the moat region.Comment: Accepted for publication in Ap
    • …
    corecore