1,900 research outputs found
Magnetic and Transport Properties in (=00.4)
Magnetic and transport properties of () system have been investigated. A broad maximum in M(T) curve,
indicative of low-dimensional antiferromagnetic ordering originated from
layers, is observed in Ca-free sample. With increasing Ca
doping level up to 0.2, the M(T) curve remains almost unchanged, while
resistivity is reduced by three orders. Higher Ca doping level leads to a
drastic change of magnetic properties. In comparison with the samples with
, the temperature corresponding to the maximum of M(T) is much
lowered for the sample =0.3. The sample =0.4 shows a small kink instead
of a broad maximum and a weak ferromagnetic feature. The electrical transport
behavior is found to be closely related to magnetic properties for the sample
=0.2, 0.25, 0.3, 0.4. It suggests that layers are involved
in charge transport in addition to conducting planes to interpret the
correlation between magnetism and charge transport. X-ray photoelectron
spectroscopy studies give an additional evidence of the the transfer of the
holes into the charge reservoir
Two-stage spin-flop transitions in S = 1/2 antiferromagnetic spin chain BaCu_2Si_2O_7
Two-stage spin-flop transitions are observed the in quasi-one-dimensional
antiferromagnet, BaCuSiO. A magnetic field applied along the
easy axis induces a spin-flop transition at 2.0 T followed by a second
transition at 4.9 T. The magnetic susceptibility indicates the presence of
Dzyaloshinskii-Moriya (DM) antisymmetric interactions between the intrachain
neighboring spins. We discuss a possible mechanism whereby the geometrical
competition between DM and interchain interactions, as discussed for the
two-dimensional antiferromagnet LaCuO, causes the two-stage
spin-flop transitions.Comment: 5 pages, 3 figures (included), accepted for publication in Phys. Rev.
Let
Doubling of the bands in overdoped Bi2Sr2CaCu2O8-probable evidence for c-axis bilayer coupling
We present high resolution ARPES data of the bilayer superconductor
Bi2Sr2CaCu2O8 (Bi2212) showing a clear doubling of the near EF bands. This
splitting approaches zero along the (0,0)-(pi,pi) nodal line and is not
observed in single layer Bi2Sr2CuO6 (Bi2201), suggesting that the splitting is
due to the long sought after bilayer splitting effect. The splitting has a
magnitude of approximately 75 meV near the middle of the zone, extrapolating to
about 100 meV near the (pi,0) poin
Phase Decomposition and Chemical Inhomogeneity in Nd2-xCexCuO4
Extensive X-ray and neutron scattering experiments and additional
transmission electron microscopy results reveal the partial decomposition of
Nd2-xCexCuO4 (NCCO) in a low-oxygen-fugacity environment such as that typically
realized during the annealing process required to create a superconducting
state. Unlike a typical situation in which a disordered secondary phase results
in diffuse powder scattering, a serendipitous match between the in-plane
lattice constant of NCCO and the lattice constant of one of the decomposition
products, (Nd,Ce)2O3, causes the secondary phase to form an oriented,
quasi-two-dimensional epitaxial structure. Consequently, diffraction peaks from
the secondary phase appear at rational positions (H,K,0) in the reciprocal
space of NCCO. Additionally, because of neodymium paramagnetism, the
application of a magnetic field increases the low-temperature intensity
observed at these positions via neutron scattering. Such effects may mimic the
formation of a structural superlattice or the strengthening of
antiferromagnetic order of NCCO, but the intrinsic mechanism may be identified
through careful and systematic experimentation. For typical reduction
conditions, the (Nd,Ce)2O3 volume fraction is ~1%, and the secondary-phase
layers exhibit long-range order parallel to the NCCO CuO2 sheets and are 50-100
angstromsthick. The presence of the secondary phase should also be taken into
account in the analysis of other experiments on NCCO, such as transport
measurements.Comment: 15 pages, 17 figures, submitted to Phys. Rev.
Electronic structure of the trilayer cuprate superconductor BiSrCaCuO
The low-energy electronic structure of the trilayer cuprate superconductor
BiSrCaCuO near optimal doping is investigated by
angle-resolved photoemission spectroscopy. The normal state quasiparticle
dispersion and Fermi surface, and the superconducting d-wave gap and coherence
peak are observed and compared with those of single and bilayer systems. We
find that both the superconducting gap magnitude and the relative
coherence-peak intensity scale linearly with for various optimally doped
materials. This suggests that the higher of the trilayer system should be
attributed to parameters that simultaneously enhance phase stiffness and
pairing strength.Comment: 5 pages, 5 figre
Li4NiTeO6 as a positive electrode for Li-ion batteries
Layered Li4NiTeO6 was shown to reversibly release/uptake B2 lithium
ions per formula unit with fair capacity retention upon long cycling. The
Li electrochemical reactivitymechanism differs from that of Li2MO3 and
is rooted in the Ni4+/Ni2+ redox couple, that takes place at a higher
potential than conventional LiNi1�xMnxO2 compounds.We explain this
in terms of inductive effect due to Te6+ ions (or the TeO6
6� moiet
Suppression of Phase Separation in LiFePO4 Nanoparticles During Battery Discharge
Using a novel electrochemical phase-field model, we question the common
belief that LixFePO4 nanoparticles separate into Li-rich and Li-poor phases
during battery discharge. For small currents, spinodal decomposition or
nucleation leads to moving phase boundaries. Above a critical current density
(in the Tafel regime), the spinodal disappears, and particles fill
homogeneously, which may explain the superior rate capability and long cycle
life of nano-LiFePO4 cathodes.Comment: 27 pages, 8 figure
Antiferromagnetic ordering in a 90 K copper oxide superconductor
Using elastic neutron scattering, we evidence a commensurate
antiferromagnetic Cu(2) order (AF) in the superconducting (SC) high-
cuprate (y=0.013, =93 K). As
in the Co-free system, the spin excitation spectrum is dominated by a magnetic
resonance peak at 41 meV but with a reduced spectral weight. The substitution
of Co thus leads to a state where AF and SC cohabit showing that the CuO
plane is a highly antiferromagnetically polarizable medium even for a sample
where T remains optimum.Comment: 3 figure
C-axis lattice dynamics in Bi-based cuprate superconductors
We present results of a systematic study of the c axis lattice dynamics in
single layer Bi2Sr2CuO6 (Bi2201), bilayer Bi2Sr2CaCu2O8 (Bi2212) and trilayer
Bi2Sr2Ca2Cu3O10 (Bi2223) cuprate superconductors. Our study is based on both
experimental data obtained by spectral ellipsometry on single crystals and
theoretical calculations. The calculations are carried out within the framework
of a classical shell model, which includes long-range Coulomb interactions and
short-range interactions of the Buckingham form in a system of polarizable
ions. Using the same set of the shell model parameters for Bi2201, Bi2212 and
Bi2223, we calculate the frequencies of the Brillouin-zone center phonon modes
of A2u symmetry and suggest the phonon mode eigenvector patterns. We achieve
good agreement between the calculated A2u eigenfrequencies and the experimental
values of the c axis TO phonon frequencies which allows us to make a reliable
phonon mode assignment for all three Bi-based cuprate superconductors. We also
present the results of our shell model calculations for the Gamma-point A1g
symmetry modes in Bi2201, Bi2212 and Bi2223 and suggest an assignment that is
based on the published experimental Raman spectra. The
superconductivity-induced phonon anomalies recently observed in the c axis
infrared and resonant Raman scattering spectra in trilayer Bi2223 are
consistently explained with the suggested assignment.Comment: 29 pages, 13 figure
Ferromagnetism and large negative magnetoresistance in Pb doped Bi-Sr-Co-O misfit-layer compound
Ferromagnetism and accompanying large negative magnetoresistance in
Pb-substituted Bi-Sr-Co-O misfit-layer compound are investigated in detail.
Recent structural analysis of (Bi,Pb)SrCoO, which has
been believed to be a Co analogue of
BiSrCaCuO, revealed that it has a more complex
structure including a CoO hexagonal layer [T. Yamamoto {\it et al.}, Jpn.
J. Appl. Phys. {\bf 39} (2000) L747]. Pb substitution for Bi not only
introduces holes into the conducting CoO layers but also creates a
certain amount of localized spins. Ferromagnetic transition appears at =
3.2 K with small spontaneous magnetization along the axis, and around the
transition temperature large and anisotropic negative magnetoresistance was
observed. This compound is the first example which shows ferromagnetic
long-range order in a two-dimensional metallic hexagnonal CoO layer.Comment: 8 pages including eps figures. To be published in J. Phys. Soc. Jp
- …
