7,585 research outputs found

    When voters decide: Causes, correlates and effects of the time-of-voting-decision

    Get PDF
    Why do individuals make their vote decisions at the point in time at which they do, and what impact does the time-of-voting-decision (TOVD) have upon other important political variables? Through a series of integrated articles, this dissertation explores the causes, correlates and effects of TOVD in Canada. The first two articles explore the relationships between TOVD and political attitudes, employing TOVD as both an independent and dependent variable. The first examines the impact that consistency, intensity and direction of summary political attitudes have on TOVD, and introduces a new measure of attitudinal ambivalence. The second article employs cognitive dissonance theory to argue that TOVD can influence attitudes towards parties, after an election occurs. The third and fourth articles respectively consider the relationships between TOVD and vote sincerity, and an individual’s ability to vote for the party that best reflects his or her own policy preferences. Insincere voters are found to have a relatively late TOVD, which the third article attributes to the fact that these individuals are able to use the campaign period to update their expectations about the competitive prospects of candidates and parties. The fourth and final article uses TOVD as a mediating variable to evaluate the impact of the campaign period on correct voting rates. It finds that late deciders, who are able to use the campaign period to collect information to inform their vote decisions, are actually less likely to vote correctly than are early deciders. The dissertation also includes a research note which outlines a new method of identifying invalid TOVD responses, and illustrates the importance of removing such cases. As a whole, this dissertation adds significantly to our knowledge of TOVD, a variable which, until now, has received relatively little scholarly attention

    On one-sided primitivity of Banach algebras

    Full text link
    Let SS be the semigroup with identity, generated by xx and yy, subject to yy being invertible and yx=xy2yx=xy^2. We study two Banach algebra completions of the semigroup algebra CS\mathbb{C}S. Both completions are shown to be left-primitive and have separating families of irreducible infinite-dimensional right modules. As an appendix, we offer an alternative proof that CS\mathbb{C}S is left-primitive but not right-primitive. We show further that, in contrast to the completions, every irreducible right module for CS\mathbb{C}S is finite dimensional and hence that CS\mathbb{C}S has a separating family of such modules.Comment: 14 pages. To appear, with minor changes, in the Proceedings of the Edinburgh Mathematical Societ

    Sublinear Estimation of Weighted Matchings in Dynamic Data Streams

    Full text link
    This paper presents an algorithm for estimating the weight of a maximum weighted matching by augmenting any estimation routine for the size of an unweighted matching. The algorithm is implementable in any streaming model including dynamic graph streams. We also give the first constant estimation for the maximum matching size in a dynamic graph stream for planar graphs (or any graph with bounded arboricity) using O~(n4/5)\tilde{O}(n^{4/5}) space which also extends to weighted matching. Using previous results by Kapralov, Khanna, and Sudan (2014) we obtain a polylog(n)\mathrm{polylog}(n) approximation for general graphs using polylog(n)\mathrm{polylog}(n) space in random order streams, respectively. In addition, we give a space lower bound of Ω(n1ε)\Omega(n^{1-\varepsilon}) for any randomized algorithm estimating the size of a maximum matching up to a 1+O(ε)1+O(\varepsilon) factor for adversarial streams

    Maximum Matching in Turnstile Streams

    Get PDF
    We consider the unweighted bipartite maximum matching problem in the one-pass turnstile streaming model where the input stream consists of edge insertions and deletions. In the insertion-only model, a one-pass 22-approximation streaming algorithm can be easily obtained with space O(nlogn)O(n \log n), where nn denotes the number of vertices of the input graph. We show that no such result is possible if edge deletions are allowed, even if space O(n3/2δ)O(n^{3/2-\delta}) is granted, for every δ>0\delta > 0. Specifically, for every 0ϵ10 \le \epsilon \le 1, we show that in the one-pass turnstile streaming model, in order to compute a O(nϵ)O(n^{\epsilon})-approximation, space Ω(n3/24ϵ)\Omega(n^{3/2 - 4\epsilon}) is required for constant error randomized algorithms, and, up to logarithmic factors, space O(n22ϵ)O( n^{2-2\epsilon} ) is sufficient. Our lower bound result is proved in the simultaneous message model of communication and may be of independent interest

    The role of Zn in the sustainable one-pot synthesis of dimethyl carbonate from carbon dioxide, methanol and propylene oxide

    Get PDF
    Dimethyl carbonate (DMC) can be applied as a greener alternative to more hazardous materials, e.g. phosgene or dimethyl sulfate. Herein, one-pot synthesis of DMC from propylene oxide, methanol and CO2 using alkali halide catalysts under mild conditions was studied. Addition of Zn powder to the K2CO3-NaBr-ZnO catalyst system was seen to increase DMC selectivity from 19.8% (TOF = 39.0 h-1) to 40.2% (TOF = 78.1 h-1) at 20 bar and 160 °C for 5 h. Catalyst characterisation showed that Zn powder increases the stability of the catalyst, preventing the active ingredients on the catalyst surface from leaching. An increase in propylene oxide conversion to DMC is attributed to the increase of Zn2+ ions in the reaction solution. Elevated pressure was not found to be a necessary reaction condition for transesterification. This study shows that increased selectivity to DMC can be achieved at mild conditions with the addition of Zn powder

    Temperature-dependent Hall scattering factor and drift mobility in remotely doped Si:B/SiGe/Si heterostructures

    Get PDF
    Hall-and-Strip measurements on modulation-doped SiGe heterostructures and combined Hall and capacitance–voltage measurements on metal-oxide-semiconductor (MOS)-gated enhancement mode structures have been used to deduce Hall scattering factors, rH, in the Si1 – xGex two-dimensional hole gas. At 300 K, rH was found to be equal to 0.4 for x = 0.2 and x = 0.3. Knowing rH, it is possible to calculate the 300 K drift mobilities in the modulation-doped structures which are found to be 400 cm2 V – 1 s – 1 at a carrier density of 3.3 × 1011 cm – 2 for x = 0.2 and 300 cm2 V – 1 s – 1 at 6.3 × 1011 cm – 2 for x = 0.3, factors of between 1.5 and 2.0 greater than a Si pMOS control

    The role of Zn in the sustainable one-pot synthesis of dimethyl carbonate from carbon dioxide, methanol and propylene oxide

    Get PDF
    Dimethyl carbonate (DMC) can be applied as a greener alternative to more hazardous materials, e.g. phosgene or dimethyl sulfate. Herein, one-pot synthesis of DMC from propylene oxide, methanol and CO2 using alkali halide catalysts under mild conditions was studied. Addition of Zn powder to the K2CO3-NaBr-ZnO catalyst system was seen to increase DMC selectivity from 19.8% (TOF = 39.0 h-1) to 40.2% (TOF = 78.1 h-1) at 20 bar and 160 °C for 5 h. Catalyst characterisation showed that Zn powder increases the stability of the catalyst, preventing the active ingredients on the catalyst surface from leaching. An increase in propylene oxide conversion to DMC is attributed to the increase of Zn2+ ions in the reaction solution. Elevated pressure was not found to be a necessary reaction condition for transesterification. This study shows that increased selectivity to DMC can be achieved at mild conditions with the addition of Zn powder

    Submodular Maximization Meets Streaming: Matchings, Matroids, and More

    Full text link
    We study the problem of finding a maximum matching in a graph given by an input stream listing its edges in some arbitrary order, where the quantity to be maximized is given by a monotone submodular function on subsets of edges. This problem, which we call maximum submodular-function matching (MSM), is a natural generalization of maximum weight matching (MWM), which is in turn a generalization of maximum cardinality matching (MCM). We give two incomparable algorithms for this problem with space usage falling in the semi-streaming range---they store only O(n)O(n) edges, using O(nlogn)O(n\log n) working memory---that achieve approximation ratios of 7.757.75 in a single pass and (3+ϵ)(3+\epsilon) in O(ϵ3)O(\epsilon^{-3}) passes respectively. The operations of these algorithms mimic those of Zelke's and McGregor's respective algorithms for MWM; the novelty lies in the analysis for the MSM setting. In fact we identify a general framework for MWM algorithms that allows this kind of adaptation to the broader setting of MSM. In the sequel, we give generalizations of these results where the maximization is over "independent sets" in a very general sense. This generalization captures hypermatchings in hypergraphs as well as independence in the intersection of multiple matroids.Comment: 18 page
    corecore