30,336 research outputs found
Using film cutting in interface design
It has been suggested that computer interfaces could be made more usable if their designers utilized cinematography techniques, which have evolved to guide
the viewer through a narrative despite frequent discontinuities in the presented scene (i.e., cuts between shots). Because of differences between the domains of
film and interface design, it is not straightforward to understand how such techniques can be transferred. May and Barnard (1995) argued that a psychological
model of watching film could support such a transference. This article presents an extended account of this model, which allows identification of the practice of collocation
of objects of interest in the same screen position before and after a cut. To verify that filmmakers do, in fact, use such techniques successfully, eye movements
were measured while participants watched the entirety of a commerciall
Application of Computational Chemical Shift Prediction Techniques to the Cereoanhydride Structure Problem-Carboxylate Complications.
Despite the vast array of techniques available to modern-day chemists, structural misassignments still occur. These misassignments are often only realized upon attempted synthesis, when the spectra of synthesized products do not match previously reported spectra. This was the case with marine natural product cereoanhydride. The originally proposed 7-membered ring anhydride (1) was shown to be incorrect, although a likely precursor to the correct structure (2) in both its laboratory synthesis and biosynthesis. Herein, in addition to showing how NMR computations could have been used to arrive at the correct structure, we show that the conversion of 1 to 2 is indeed energetically viable, and we highlight complications in predicting NMR chemical shifts for molecules with acidic protons
Spin-Dependent Neutralino-Nucleus Scattering for Nuclei
We perform nuclear shell model calculations of the neutralino-nucleus cross
section for several nuclei in the A = 127 region. Each of the four nuclei
considered is a primary target in a direct dark matter detection experiment.
The calculations are valid for all relevant values of the momentum transfer.
Our calculations are performed in the model space
using extremely large bases, allowing us to include all relevant correlations.
We also study the dependence of the nuclear response upon the assumed nuclear
Hamiltonian and find it to be small. We find good agreement with the observed
magnetic moment as well as other obervables for the four nuclei considered:
^{127}I, ^{129,131}Xe, and ^{125}Te.Comment: 23 pages + 7 postscript figures. LaTeX uses RevTe
Colocation and role of polyphosphates and alkaline phosphatase in apatite biomineralization of elasmobranch tesserae
AbstractElasmobranchs (e.g. sharks and rays), like all fishes, grow continuously throughout life. Unlike other vertebrates, their skeletons are primarily cartilaginous, comprising a hyaline cartilage-like core, stiffened by a thin outer array of mineralized, abutting and interconnected tiles called tesserae. Tesserae bear active mineralization fronts at all margins and the tesseral layer is thin enough to section without decalcifying, making this a tractable but largely unexamined system for investigating controlled apatite mineralization, while also offering a potential analog for endochondral ossification. The chemical mechanism for tesserae mineralization has not been described, but has been previously attributed to spherical precursors, and alkaline phosphatase (ALP) activity. Here, we use a variety of techniques to elucidate the involvement of phosphorus-containing precursors in the formation of tesserae at their mineralization fronts. Using Raman spectroscopy, fluorescence microscopy and histological methods, we demonstrate that ALP activity is located with inorganic phosphate polymers (polyP) at the tessera–uncalcified cartilage interface, suggesting a potential mechanism for regulated mineralization: inorganic phosphate (Pi) can be cleaved from polyP by ALP, thus making Pi locally available for apatite biomineralization. The application of exogenous ALP to tissue cross-sections resulted in the disappearance of polyP and the appearance of Pi in uncalcified cartilage adjacent to mineralization fronts. We propose that elasmobranch skeletal cells control apatite biomineralization by biochemically controlling polyP and ALP production, placement and activity. Previous identification of polyP and ALP shown previously in mammalian calcifying cartilage supports the hypothesis that this mechanism may be a general regulating feature in the mineralization of vertebrate skeletons
Renormalization of Drift and Diffusivity in Random Gradient Flows
We investigate the relationship between the effective diffusivity and
effective drift of a particle moving in a random medium. The velocity of the
particle combines a white noise diffusion process with a local drift term that
depends linearly on the gradient of a gaussian random field with homogeneous
statistics. The theoretical analysis is confirmed by numerical simulation. For
the purely isotropic case the simulation, which measures the effective drift
directly in a constant gradient background field, confirms the result
previously obtained theoretically, that the effective diffusivity and effective
drift are renormalized by the same factor from their local values. For this
isotropic case we provide an intuitive explanation, based on a {\it spatial}
average of local drift, for the renormalization of the effective drift
parameter relative to its local value. We also investigate situations in which
the isotropy is broken by the tensorial relationship of the local drift to the
gradient of the random field. We find that the numerical simulation confirms a
relatively simple renormalization group calculation for the effective
diffusivity and drift tensors.Comment: Latex 16 pages, 5 figures ep
Randomized Composable Core-sets for Distributed Submodular Maximization
An effective technique for solving optimization problems over massive data
sets is to partition the data into smaller pieces, solve the problem on each
piece and compute a representative solution from it, and finally obtain a
solution inside the union of the representative solutions for all pieces. This
technique can be captured via the concept of {\em composable core-sets}, and
has been recently applied to solve diversity maximization problems as well as
several clustering problems. However, for coverage and submodular maximization
problems, impossibility bounds are known for this technique \cite{IMMM14}. In
this paper, we focus on efficient construction of a randomized variant of
composable core-sets where the above idea is applied on a {\em random
clustering} of the data. We employ this technique for the coverage, monotone
and non-monotone submodular maximization problems. Our results significantly
improve upon the hardness results for non-randomized core-sets, and imply
improved results for submodular maximization in a distributed and streaming
settings.
In summary, we show that a simple greedy algorithm results in a
-approximate randomized composable core-set for submodular maximization
under a cardinality constraint. This is in contrast to a known impossibility result for (non-randomized) composable core-set. Our
result also extends to non-monotone submodular functions, and leads to the
first 2-round MapReduce-based constant-factor approximation algorithm with
total communication complexity for either monotone or non-monotone
functions. Finally, using an improved analysis technique and a new algorithm
, we present an improved -approximation algorithm
for monotone submodular maximization, which is in turn the first
MapReduce-based algorithm beating factor in a constant number of rounds
- …