476 research outputs found

    New composite models of partially ionized protoplanetary disks

    Full text link
    We study an accretion disk in which three different regions may coexist: MHD turbulent regions, dead zones and gravitationally unstable regions. Although the dead zones are stable, there is some transport due to the Reynolds stress associated with waves emitted from the turbulent layers. We model the transport in each of the different regions by its own α\alpha parameter, this being 10 to 10310^{3} times smaller in dead zones than in active layers. In gravitationally unstable regions, α\alpha is determined by the fact that the disk self-adjusts to a state of marginal stability. We construct steady-state models of such disks. We find that for uniform mass flow, the disk has to be more massive, hotter and thicker at the radii where there is a dead zone. In disks in which the dead zone is very massive, gravitational instabilities are present. Whether such models are realistic or not depends on whether hydrodynamical fluctuations driven by the turbulent layers can penetrate all the way inside the dead zone. This may be more easily achieved when the ratio of the mass of the active layer to that of the dead zone is relatively large, which in our models corresponds to α\alpha in the dead zone being about 10% of α\alpha in the active layers. If the disk is at some stage of its evolution not in steady-state, then the surface density will evolve toward the steady-state solution. However, if α\alpha in the dead zone is much smaller than in the active zone, the timescale for the parts of the disk beyond a few AU to reach steady-state may become longer than the disk lifetime. Steady-state disks with dead zones are a more favorable environment for planet formation than standard disks, since the dead zone is typically 10 times more massive than a corresponding turbulent zone at the same location.Comment: 13 pages, 5 figures, accepted for publication in Ap

    Magnetothermal instabilities in magnetized anisotropic plasmas

    Full text link
    Using the transport equations for an ideal anisotropic collisionless plasma derived from the Vlasov equation by the 16-moment method, we analyse the influence of pressure anisotropy exhibited by collisionless magnetized plasmas on the magnetothermal (MTI) and heat-flux-driven buoyancy (HBI) instabilities. We calculate the dispersion relation and the growth rates for these instabilities in the presence of a background heat flux and for configurations with static pressure anisotropy, finding that when the frequency at which heat conduction acts is much larger than any other frequency in the system (i.e. weak magnetic field) the pressure anisotropy has no effect on the MTI/HBI, provided the degree of anisotropy is small. In contrast, when this ordering of timescales does not apply the instability criteria depend on pressure anisotropy. Specifically, the growth time of the instabilities in the anisotropic case can be almost one order of magnitude smaller than its isotropic counterpart. We conclude that in plasmas where pressure anisotropy is present the MTI/HBI are modified. However, in environments with low magnetic fields and small anisotropy such as the ICM the results obtained from the 16-moment equations under the approximations considered are similar to those obtained from ideal MHD.Comment: v3: 16 pages, 2 figures, fixed typos, added references and a final note on related wor

    Angular Momentum Transfer in Star-Discs Encounters: The Case of Low-Mass Discs

    Full text link
    A prerequisite for the formation of stars and planetary systems is that angular momentum is transported in some way from the inner regions of the accretion disc. Tidal effects may play an important part in this angular momentum transport. Here the angular momentum transfer in an star-disc encounter is investigated numerically for a variety of encounter parameters in the case of low mass discs. Although good agreement is found with analytical results for the entire disc, the loss {\it inside} the disc can be up to an order of magnitude higher than previously assumed. The differences in angular momentum transport by secondaries on a hyperbolic, parabolic and elliptical path are shown, and it is found that a succession of distant encounters might be equally, if not more, successful in removing angular momentum than single close encounter.Comment: 11pages, 8 figures, 1 tabl

    Hybrid viscosity and the magnetoviscous instability in hot, collisionless accretion disks

    Full text link
    We aim to illustrate the role of hot protons in enhancing the magnetorotational instability (MRI) via the ``hybrid'' viscosity, which is due to the redirection of protons interacting with static magnetic field perturbations, and to establish that it is the only relevant mechanism in this situation. It has recently been shown by Balbus \cite{PBM1} and Islam & Balbus \cite{PBM11} using a fluid approach that viscous momentum transport is key to the development of the MRI in accretion disks for a wide range of parameters. However, their results do not apply in hot, advection-dominated disks, which are collisionless. We develop a fluid picture using the hybrid viscosity mechanism, that applies in the collisionless limit. We demonstrate that viscous effects arising from this mechanism can significantly enhance the growth of the MRI as long as the plasma \beta \gapprox 80. Our results facilitate for the first time a direct comparison between the MHD and quasi-kinetic treatments of the magnetoviscous instability in hot, collisionless disks.Comment: To appear in the proceedings of the first Kodai-Trieste workshop on Plasma Astrophysics (Aug 27-Sept 07 2007), Springer Astrophysics and Space Science Proceedings serie

    Accretion of low angular momentum material onto black holes: 2D magnetohydrodynamical case

    Full text link
    We report on the second phase of our study of slightly rotating accretion flows onto black holes. We consider magnetohydrodynamical (MHD) accretion flows with a spherically symmetric density distribution at the outer boundary, but with spherical symmetry broken by the introduction of a small, latitude-dependent angular momentum and a weak radial magnetic field. We study accretion flows by means of numerical 2D, axisymmetric, MHD simulations with and without resistive heating. Our main result is that the properties of the accretion flow depend mostly on an equatorial accretion torus which is made of the material that has too much angular momentum to be accreted directly. The torus accretes, however, because of the transport of angular momentum due to the magnetorotational instability (MRI). Initially, accretion is dominated by the polar funnel, as in the hydrodynamic inviscid case, where material has zero or very low angular momentum. At the later phase of the evolution, the torus thickens towards the poles and develops a corona or an outflow or both. Consequently, the mass accretion through the funnel is stopped. The accretion of rotating gas through the torus is significantly reduced compared to the accretion of non-rotating gas (i.e., the Bondi rate). It is also much smaller than the accretion rate in the inviscid, weakly rotating case.Our results do not change if we switch on or off resistive heating. Overall our simulations are very similar to those presented by Stone, Pringle, Hawley and Balbus despite different initial and outer boundary conditions. Thus, we confirm that MRI is very robust and controls the nature of radiatively inefficient accretion flows.Comment: submitted in Ap

    Simulation of the Magnetothermal Instability

    Get PDF
    In many magnetized, dilute astrophysical plasmas, thermal conduction occurs almost exclusively parallel to magnetic field lines. In this case, the usual stability criterion for convective stability, the Schwarzschild criterion, which depends on entropy gradients, is modified. In the magnetized long mean free path regime, instability occurs for small wavenumbers when (dP/dz)(dln T/dz) > 0, which we refer to as the Balbus criterion. We refer to the convective-type instability that results as the magnetothermal instability (MTI). We use the equations of MHD with anisotropic electron heat conduction to numerically simulate the linear growth and nonlinear saturation of the MTI in plane-parallel atmospheres that are unstable according to the Balbus criterion. The linear growth rates measured from the simulations are in excellent agreement with the weak field dispersion relation. The addition of isotropic conduction, e.g. radiation, or strong magnetic fields can damp the growth of the MTI and affect the nonlinear regime. The instability saturates when the atmosphere becomes isothermal as the source of free energy is exhausted. By maintaining a fixed temperature difference between the top and bottom boundaries of the simulation domain, sustained convective turbulence can be driven. MTI-stable layers introduced by isotropic conduction are used to prevent the formation of unresolved, thermal boundary layers. We find that the largest component of the time-averaged heat flux is due to advective motions as opposed to the actual thermal conduction itself. Finally, we explore the implications of this instability for a variety of astrophysical systems, such as neutron stars, the hot intracluster medium of galaxy clusters, and the structure of radiatively inefficient accretion flows.Comment: Accepted for publication in Astrophysics and Space Science as proceedings of the 6th High Energy Density Laboratory Astrophysics (HEDLA) Conferenc

    Protodiscs around Hot Magnetic Rotator Stars

    Full text link
    We develop equations and obtain solutions for the structure and evolution of a protodisc region that is initially formed with no radial motion and super-Keplerian rotation speed when wind material from a hot rotating star is channelled towards its equatorial plane by a dipole-type magnetic field. Its temperature is around 10710^7K because of shock heating and the inflow of wind material causes its equatorial density to increase with time. The centrifugal force and thermal pressure increase relative to the magnetic force and material escapes at its outer edge. The protodisc region of a uniformly rotating star has almost uniform rotation and will shrink radially unless some instability intervenes. In a star with angular velocity increasing along its surface towards the equator, the angular velocity of the protodisc region decreases radially outwards and magnetorotational instability (MRI) can occur within a few hours or days. Viscosity resulting from MRI will readjust the angular velocity distribution of the protodisc material and may assist in the formation of a quasi-steady disc. Thus, the centrifugal breakout found in numerical simulations for uniformly rotating stars does not imply that quasi-steady discs with slow outflow cannot form around magnetic rotator stars with solar-type differential rotation.Comment: Accepted for publication in MNRAS. 16 pages, 1 figure, 7 table

    The Magnetohydrodynamics of Convection-Dominated Accretion Flows

    Get PDF
    Radiatively inefficient accretion flows onto black holes are unstable due to both an outwardly decreasing entropy (`convection') and an outwardly decreasing rotation rate (the `magnetorotational instability'; MRI). Using a linear magnetohydrodynamic stability analysis, we show that long-wavelength modes are primarily destabilized by the entropy gradient and that such `convective' modes transport angular momentum inwards. Moreover, the stability criteria for the convective modes are the standard Hoiland criteria of hydrodynamics. By contrast, shorter wavelength modes are primarily destabilized by magnetic tension and differential rotation. These `MRI' modes transport angular momentum outwards. The convection-dominated accretion flow (CDAF) model, which has been proposed for radiatively inefficient accretion onto a black hole, posits that inward angular momentum transport and outward energy transport by long-wavelength convective fluctuations are crucial for determining the structure of the accretion flow. Our analysis suggests that the CDAF model is applicable to a magnetohydrodynamic accretion flow provided the magnetic field saturates at a sufficiently sub-equipartition value (plasma beta >> 1), so that long-wavelength convective fluctuations can fit inside the accretion disk. Numerical magnetohydrodynamic simulations are required to determine whether such a sub-equipartition field is in fact obtained.Comment: 17 pages including 3 figures. Accepted for publication in ApJ. New appendix and figure were added; some changes of the text were made in response to the referee

    The thermal-viscous disk instability model in the AGN context

    Get PDF
    Accretion disks in AGN should be subject to the same type of instability as in cataclysmic variables (CVs) or in low-mass X-ray binaries (LMXBs), which leads to dwarf nova and soft X-ray transient outbursts. It has been suggested that this thermal/viscous instability can account for the long term variability of AGNs. We test this assertion by presenting a systematic study of the application of the disk instability model (DIM) to AGNs. We are using the adaptative grid numerical code we have developed in the context of CVs, enabling us to fully resolve the radial structure of the disk. We show that, because in AGN disks the Mach numbers are very large, the heating and cooling fronts are so narrow that they cannot be resolved by the numerical codes that have been used until now. In addition, these fronts propagate on time scales much shorter than the viscous time. As a result, a sequence of heating and cooling fronts propagate back and forth in the disk, leading only to small variations of the accretion rate onto the black hole, with short quiescent states occurring for very low mass transfer rates only. Truncation of the inner part of the disk by e.g. an ADAF does not alter this result, but enables longer quiescent states. Finally we discuss the effects of irradiation by the central X-ray source, and show that, even for extremely high irradiation efficiencies, outbursts are not a natural outcome of the model.Comment: Astronomy & Astrophysics - in pres
    corecore