951 research outputs found
Multicritical continuous random trees
We introduce generalizations of Aldous' Brownian Continuous Random Tree as
scaling limits for multicritical models of discrete trees. These discrete
models involve trees with fine-tuned vertex-dependent weights ensuring a k-th
root singularity in their generating function. The scaling limit involves
continuous trees with branching points of order up to k+1. We derive explicit
integral representations for the average profile of this k-th order
multicritical continuous random tree, as well as for its history distributions
measuring multi-point correlations. The latter distributions involve
non-positive universal weights at the branching points together with fractional
derivative couplings. We prove universality by rederiving the same results
within a purely continuous axiomatic approach based on the resolution of a set
of consistency relations for the multi-point correlations. The average profile
is shown to obey a fractional differential equation whose solution involves
hypergeometric functions and matches the integral formula of the discrete
approach.Comment: 34 pages, 12 figures, uses lanlmac, hyperbasics, eps
Optimal spatial transportation networks where link-costs are sublinear in link-capacity
Consider designing a transportation network on vertices in the plane,
with traffic demand uniform over all source-destination pairs. Suppose the cost
of a link of length and capacity scales as for fixed
. Under appropriate standardization, the cost of the minimum cost
Gilbert network grows essentially as , where on and on . This quantity is an upper bound in
the worst case (of vertex positions), and a lower bound under mild regularity
assumptions. Essentially the same bounds hold if we constrain the network to be
efficient in the sense that average route-length is only times
average straight line length. The transition at corresponds to
the dominant cost contribution changing from short links to long links. The
upper bounds arise in the following type of hierarchical networks, which are
therefore optimal in an order of magnitude sense. On the large scale, use a
sparse Poisson line process to provide long-range links. On the medium scale,
use hierachical routing on the square lattice. On the small scale, link
vertices directly to medium-grid points. We discuss one of many possible
variant models, in which links also have a designed maximum speed and the
cost becomes .Comment: 13 page
Random multi-index matching problems
The multi-index matching problem (MIMP) generalizes the well known matching
problem by going from pairs to d-uplets. We use the cavity method from
statistical physics to analyze its properties when the costs of the d-uplets
are random. At low temperatures we find for d>2 a frozen glassy phase with
vanishing entropy. We also investigate some properties of small samples by
enumerating the lowest cost matchings to compare with our theoretical
predictions.Comment: 22 pages, 16 figure
Matchings on infinite graphs
Elek and Lippner (2010) showed that the convergence of a sequence of
bounded-degree graphs implies the existence of a limit for the proportion of
vertices covered by a maximum matching. We provide a characterization of the
limiting parameter via a local recursion defined directly on the limit of the
graph sequence. Interestingly, the recursion may admit multiple solutions,
implying non-trivial long-range dependencies between the covered vertices. We
overcome this lack of correlation decay by introducing a perturbative parameter
(temperature), which we let progressively go to zero. This allows us to
uniquely identify the correct solution. In the important case where the graph
limit is a unimodular Galton-Watson tree, the recursion simplifies into a
distributional equation that can be solved explicitly, leading to a new
asymptotic formula that considerably extends the well-known one by Karp and
Sipser for Erd\"os-R\'enyi random graphs.Comment: 23 page
Mean-field methods in evolutionary duplication-innovation-loss models for the genome-level repertoire of protein domains
We present a combined mean-field and simulation approach to different models
describing the dynamics of classes formed by elements that can appear,
disappear or copy themselves. These models, related to a paradigm
duplication-innovation model known as Chinese Restaurant Process, are devised
to reproduce the scaling behavior observed in the genome-wide repertoire of
protein domains of all known species. In view of these data, we discuss the
qualitative and quantitative differences of the alternative model formulations,
focusing in particular on the roles of element loss and of the specificity of
empirical domain classes.Comment: 10 Figures, 2 Table
The structure of typical clusters in large sparse random configurations
The initial purpose of this work is to provide a probabilistic explanation of
a recent result on a version of Smoluchowski's coagulation equations in which
the number of aggregations is limited. The latter models the deterministic
evolution of concentrations of particles in a medium where particles coalesce
pairwise as time passes and each particle can only perform a given number of
aggregations. Under appropriate assumptions, the concentrations of particles
converge as time tends to infinity to some measure which bears a striking
resemblance with the distribution of the total population of a Galton-Watson
process started from two ancestors. Roughly speaking, the configuration model
is a stochastic construction which aims at producing a typical graph on a set
of vertices with pre-described degrees. Specifically, one attaches to each
vertex a certain number of stubs, and then join pairwise the stubs uniformly at
random to create edges between vertices. In this work, we use the configuration
model as the stochastic counterpart of Smoluchowski's coagulation equations
with limited aggregations. We establish a hydrodynamical type limit theorem for
the empirical measure of the shapes of clusters in the configuration model when
the number of vertices tends to . The limit is given in terms of the
distribution of a Galton-Watson process started with two ancestors
Universal Distributions for Growth Processes in 1+1 Dimensions and Random Matrices
We develop a scaling theory for KPZ growth in one dimension by a detailed
study of the polynuclear growth (PNG) model. In particular, we identify three
universal distributions for shape fluctuations and their dependence on the
macroscopic shape. These distribution functions are computed using the
partition function of Gaussian random matrices in a cosine potential.Comment: 4 pages, 3 figures, 1 table, RevTeX, revised version, accepted for
publication in PR
On Bootstrap Percolation in Living Neural Networks
Recent experimental studies of living neural networks reveal that their
global activation induced by electrical stimulation can be explained using the
concept of bootstrap percolation on a directed random network. The experiment
consists in activating externally an initial random fraction of the neurons and
observe the process of firing until its equilibrium. The final portion of
neurons that are active depends in a non linear way on the initial fraction.
The main result of this paper is a theorem which enables us to find the
asymptotic of final proportion of the fired neurons in the case of random
directed graphs with given node degrees as the model for interacting network.
This gives a rigorous mathematical proof of a phenomena observed by physicists
in neural networks
The scaling limit of the incipient infinite cluster in high-dimensional percolation. II. Integrated super-Brownian excursion
For independent nearest-neighbour bond percolation on Z^d with d >> 6, we
prove that the incipient infinite cluster's two-point function and three-point
function converge to those of integrated super-Brownian excursion (ISE) in the
scaling limit. The proof is based on an extension of the new expansion for
percolation derived in a previous paper, and involves treating the magnetic
field as a complex variable. A special case of our result for the two-point
function implies that the probability that the cluster of the origin consists
of n sites, at the critical point, is given by a multiple of n^{-3/2}, plus an
error term of order n^{-3/2-\epsilon} with \epsilon >0. This is a strong
statement that the critical exponent delta is given by delta =2.Comment: 56 pages, 3 Postscript figures, in AMS-LaTeX, with graphicx, epic,
and xr package
Random tree growth by vertex splitting
We study a model of growing planar tree graphs where in each time step we
separate the tree into two components by splitting a vertex and then connect
the two pieces by inserting a new link between the daughter vertices. This
model generalises the preferential attachment model and Ford's -model
for phylogenetic trees. We develop a mean field theory for the vertex degree
distribution, prove that the mean field theory is exact in some special cases
and check that it agrees with numerical simulations in general. We calculate
various correlation functions and show that the intrinsic Hausdorff dimension
can vary from one to infinity, depending on the parameters of the model.Comment: 47 page
- …