9 research outputs found

    Developing adaptive control:Age-related differences in task choices and awareness of proactive and reactive control demands

    Get PDF
    Developmental changes in executive function are often explained in terms of core cognitive processes and associated neural substrates. For example, younger children tend to engage control reactively in the moment as needed, whereas older children increasingly engage control proactively, in anticipation of needing it. Such developments may reflect increasing capacities for active maintenance dependent upon dorsolateral prefrontal cortex. However, younger children will engage proactive control when reactive control is made more difficult, suggesting that developmental changes may also reflect decisions about whether to engage control, and how. We tested awareness of temporal control demands and associated task choices in 5-year-olds and 10-year-olds and adults using a demand selection task. Participants chose between one task that enabled proactive control and another task that enabled reactive control. Adults reported awareness of these different control demands and preferentially played the proactive task option. Ten-year-olds reported awareness of control demands but selected task options at chance. Five-year-olds showed neither awareness nor task preference, but a subsample who exhibited awareness of control demands preferentially played the reactive task option, mirroring their typical control mode. Thus, developmental improvements in executive function may in part reflect better awareness of cognitive demands and adaptive behavior, which may in turn reflect changes in dorsal anterior cingulate in signaling task demands to lateral prefrontal cortex

    The malleability of executive function in early childhood: Effects of schooling and targeted training

    No full text
    Executive function (EF), its importance for scholastic achievement and the question of whether or not EF is malleable, have become a topic of intense interest. Education or schooling is often seen as effective approaches to enhance EF due to the specific school-related requirements as compared to kindergarten or pre-school. However, no study to date has investigated whether targeted training focusing on those domains might be comparable with regular schooling in improving EF and fluid intelligence (Gf). The aim of the present study was to replicate and extend the previously demonstrated schooling effects on EF by using a school-cutoff design, and to further investigate whether a theoretically motivated intervention targeting specific EF, i.e., working memory (WM) or inhibitory control (IC), could achieve comparable effects with schooling in both, WM and IC, as well as Gf. 91 6-year-old kindergarteners and first-graders with similar chronological age participated the study. We compared the performance of a first-grade schooling group with that of two kindergarten training groups as well as a business-as-usual kindergarten control group. Participants were assessed in WM, IC and Gf at baseline, immediately after the intervention (posttest), as well as 3 months after training completion (follow-up). The results showed that the schooling group indeed outperformed the kindergarten groups at baseline in several cognitive tasks. Furthermore, both the WM and IC training showed pronounced gains in the trained tasks, as well as varying degrees of improvement in non-trained outcome measures. Most importantly, both training groups achieved comparable performance with the schooling group, which was especially apparent in Gf at follow-up. Our findings provide further evidence for the malleability of EF demonstrating that both, long-term and short-term interventions can facilitate the acquisition of those important skills, and as such, our work has important implications for educational practice
    corecore