2,299 research outputs found

    Shear-dependent apparent slip on hydrophobic surfaces: The Mattress Model

    Full text link
    Recent experiments (Zhu & Granick (2001) Phys. Rev. Lett. 87 096105) have measured a large shear dependent fluid slip at partially wetting fluid-solid surfaces. We present a simple model for such slip, motivated by the recent observations of nanobubbles on hydrophobic surfaces. The model considers the dynamic response of bubbles to change in hydrodynamic pressure due to the oscillation of a solid surface. Both the compression and diffusion of gas in the bubbles decrease the force on the oscillating surface by a ``leaking mattress'' effect, thereby creating an apparent shear-dependent slip. With bubbles similar to those observed by atomic force microscopy to date, the model is found to lead to force decreases consistent with the experimental measurements of Zhu & Granick

    On the Aggregation of Inertial Particles in Random Flows

    Full text link
    We describe a criterion for particles suspended in a randomly moving fluid to aggregate. Aggregation occurs when the expectation value of a random variable is negative. This random variable evolves under a stochastic differential equation. We analyse this equation in detail in the limit where the correlation time of the velocity field of the fluid is very short, such that the stochastic differential equation is a Langevin equation.Comment: 16 pages, 2 figure

    Semisimplicity of the quantum cohomology for smooth Fano toric varieties associated with facet symmetric polytopes

    Full text link
    The degree zero part of the quantum cohomology algebra of a smooth Fano toric symplectic manifold is determined by the superpotential function, W, of its moment polytope. In particular, this algebra is semisimple, i.e. splits as a product of fields, if and only if all the critical points of W are non-degenerate. In this paper we prove that this non-degeneracy holds for all smooth Fano toric varieties with facet-symmetric duals to moment polytopes.Comment: 16 pages; corrected version, published in Electron. Res. Announc. Math. Sc

    UV-induced ligand exchange in MHC class I protein crystals

    Get PDF
    High-throughput structure determination of proteinβˆ’ligand complexes is central in drug development and structural proteomics. To facilitate such high-throughput structure determination we designed an induced replacement strategy. Crystals of a protein complex bound to a photosensitive ligand are exposed to UV light, inducing the departure of the bound ligand, allowing a new ligand to soak in. We exemplify the approach for a class of protein complexes that is especially recalcitrant to high-throughput strategies: the MHC class I proteins. We developed a UV-sensitive, β€œconditional”, peptide ligand whose UV-induced cleavage in the crystals leads to the exchange of the low-affinity lytic fragments for full-length peptides introduced in the crystallant solution. This β€œin crystallo” exchange is monitored by the loss of seleno-methionine anomalous diffraction signal of the conditional peptide compared to the signal of labeled MHC Ξ²2m subunit. This method has the potential to facilitate high-throughput crystallography in various protein families

    Class I major histocompatibility complexes loaded by a periodate trigger

    Get PDF
    Class I major histocompatibility complexes (MHCs) present peptide ligands on the cell surface for recognition by appropriate cytotoxic T cells. The unstable nature of unliganded MHC necessitates the production of recombinant class I complexes through in vitro refolding reactions in the presence of an added excess of peptides. This strategy is not amenable to high-throughput production of vast collections of class I complexes. To address this issue, we recently designed photocaged MHC ligands that can be cleaved by a UV light trigger in the MHC bound state under conditions that do not affect the integrity of the MHC structure. The results obtained with photocaged MHC ligands demonstrate that conditional MHC ligands can form a generally applicable concept for the creation of defined peptideβˆ’MHCs. However, the use of UV exposure to mediate ligand exchange is unsuited for a number of applications, due to the lack of UV penetration through cell culture systems and due to the transfer of heat upon UV irradiation, which can induce evaporation. To overcome these limitations, here, we provide proof-of-concept for the generation of defined peptideβˆ’MHCs by chemical trigger-induced ligand exchange. The crystal structure of the MHC with the novel chemosensitive ligand showcases that the ligand occupies the expected binding site, in a conformation where the hydroxyl groups should be reactive to periodate. We proceed to validate this technology by producing peptideβˆ’MHCs that can be used for T cell detection. The methodology that we describe here should allow loading of MHCs with defined peptides in cell culture devices, thereby permitting antigen-specific T cell expansion and purification for cell therapy. In addition, this technology will be useful to develop miniaturized assay systems for performing high-throughput screens for natural and unnatural MHC ligands

    The Palomar Testbed Interferometer Calibrator Catalog

    Get PDF
    The Palomar Testbed Interferometer (PTI) archive of observations between 1998 and 2005 is examined for objects appropriate for calibration of optical long-baseline interferometer observations - stars that are predictably point-like and single. Approximately 1,400 nights of data on 1,800 objects were examined for this investigation. We compare those observations to an intensively studied object that is a suitable calibrator, HD217014, and statistically compare each candidate calibrator to that object by computing both a Mahalanobis distance and a Principal Component Analysis. Our hypothesis is that the frequency distribution of visibility data associated with calibrator stars differs from non-calibrator stars such as binary stars. Spectroscopic binaries resolved by PTI, objects known to be unsuitable for calibrator use, are similarly tested to establish detection limits of this approach. From this investigation, we find more than 350 observed stars suitable for use as calibrators (with an additional β‰ˆ140\approx 140 being rejected), corresponding to ≳95\gtrsim 95% sky coverage for PTI. This approach is noteworthy in that it rigorously establishes calibration sources through a traceable, empirical methodology, leveraging the predictions of spectral energy distribution modeling but also verifying it with the rich body of PTI's on-sky observations.Comment: 100 pages, 7 figures, 7 tables; to appear in the May 2008ApJS, v176n
    • …
    corecore