71 research outputs found

    Sterols sense swelling in lipid bilayers

    Full text link
    In the mimetic membrane system of phosphatidylcholine bilayers, thickening (pre-critical behavior, anomalous swelling) of the bilayers is observed, in the vicinity of the main transition, which is non-linear with temperature. The sterols cholesterol and androsten are used as sensors in a time-resolved simultaneous small- and wide angle x-ray diffraction study to investigate the cause of the thickening. We observe precritical behavior in the pure lipid system, as well as with sterol concentrations less than 15%. To describe the precritical behavior we introduce a theory of precritical phenomena.The good temperature resolution of the data shows that a theory of the influence of fluctuations needs modification. The main cause of the critical behavior appears to be a changing hydration of the bilayer.Comment: 11 pages, 7 ps figures included, to appear in Phys.Rev.

    A swollen phase observed between the liquid-crystalline phase and the interdigitated phase induced by pressure and/or adding ethanol in DPPC aqueous solution

    Full text link
    A swollen phase, in which the mean repeat distance of lipid bilayers is larger than the other phases, is found between the liquid-crystalline phase and the interdigitated gel phase in DPPC aqueous solution. Temperature, pressure and ethanol concentration dependences of the structure were investigated by small-angle neutron scattering, and a bending rigidity of lipid bilayers was by neutron spin echo. The nature of the swollen phase is similar to the anomalous swelling reported previously. However, the temperature dependence of the mean repeat distance and the bending rigidity of lipid bilayers are different. This phase could be a precursor to the interdigitated gel phase induced by pressure and/or adding ethanol.Comment: 7 pages, 6 figure

    Role of Lipids in Spheroidal High Density Lipoproteins

    Get PDF
    We study the structure and dynamics of spherical high density lipoprotein (HDL) particles through coarse-grained multi-microsecond molecular dynamics simulations. We simulate both a lipid droplet without the apolipoprotein A-I (apoA-I) and the full HDL particle including two apoA-I molecules surrounding the lipid compartment. The present models are the first ones among computational studies where the size and lipid composition of HDL are realistic, corresponding to human serum HDL. We focus on the role of lipids in HDL structure and dynamics. Particular attention is paid to the assembly of lipids and the influence of lipid-protein interactions on HDL properties. We find that the properties of lipids depend significantly on their location in the particle (core, intermediate region, surface). Unlike the hydrophobic core, the intermediate and surface regions are characterized by prominent conformational lipid order. Yet, not only the conformations but also the dynamics of lipids are found to be distinctly different in the different regions of HDL, highlighting the importance of dynamics in considering the functionalization of HDL. The structure of the lipid droplet close to the HDL-water interface is altered by the presence of apoA-Is, with most prominent changes being observed for cholesterol and polar lipids. For cholesterol, slow trafficking between the surface layer and the regimes underneath is observed. The lipid-protein interactions are strongest for cholesterol, in particular its interaction with hydrophobic residues of apoA-I. Our results reveal that not only hydrophobicity but also conformational entropy of the molecules are the driving forces in the formation of HDL structure. The results provide the first detailed structural model for HDL and its dynamics with and without apoA-I, and indicate how the interplay and competition between entropy and detailed interactions may be used in nanoparticle and drug design through self-assembly

    Interacting soft membranes

    No full text
    • …
    corecore