12 research outputs found

    Quantifying active deformation within the Southwestern Foothills of Taiwan, from incised fluvial terraces and sedimentary data

    No full text
    International audienceThe Taiwan mountain range stands as one of the most active regions on Earth. With an overall shortening rate of ~40 mm/yr and an average erosion rate of ~4 mm/yr, this mountain range appears ideal to better understand the interactions between tectonics and surface processes, and how these shape active landscapes. Here we explore the geomorphic and sedimentary record of active deformation within the Southwestern Foothills of Taiwan, and we quantify from there the kinematics of active faults. In particular, we investigate the downstream portion of the meandering Tsengwen river - one of the largest rivers of this region - where we identify and correlate remnants of 7 terrace levels, progressively abandoned over the last ~5 kyr. The incision of these terraces is interpreted as being controlled to the first-order by folding and uplift related to underlying active faults. The evolution of the river is reconstructed from correlated terrace remnants, and our results indicate that the overall river sinuosity and gradient did not vary significantly during the past ~5 kyr in response to tectonics. Incremental tectonic uplift is retrieved from terrace incision corrected for sedimentation at the mountain front, and is used to derive the incremental shortening since terrace abandonment. Downstream, within the Coastal Plain, the Tsengwen river reaches its base level and aggrades. Sedimentary facies within boreholes of the Coastal Plain record vertical displacements relative to sea level, spatially consistent with potential blind active faults. When corrected for eustatic variations, these data allow for quantifying tectonic uplift rates within the Coastal Plain over the last ~20 kyr. Taken altogether, our quantitative analysis of the Tsengwen river record, from terrace incision to dowsntream aggradation, reveals that the most frontal active faults absorb a shortening rate of at least ~35 mm/yr, that is most of - if not all - the shortening rate to the absorbed across the whole mountain range

    Quantifying active deformation within the Southwestern Foothills of Taiwan, from incised fluvial terraces and sedimentary data

    No full text
    International audienceThe Taiwan mountain range stands as one of the most active regions on Earth. With an overall shortening rate of ~40 mm/yr and an average erosion rate of ~4 mm/yr, this mountain range appears ideal to better understand the interactions between tectonics and surface processes, and how these shape active landscapes. Here we explore the geomorphic and sedimentary record of active deformation within the Southwestern Foothills of Taiwan, and we quantify from there the kinematics of active faults. In particular, we investigate the downstream portion of the meandering Tsengwen river - one of the largest rivers of this region - where we identify and correlate remnants of 7 terrace levels, progressively abandoned over the last ~5 kyr. The incision of these terraces is interpreted as being controlled to the first-order by folding and uplift related to underlying active faults. The evolution of the river is reconstructed from correlated terrace remnants, and our results indicate that the overall river sinuosity and gradient did not vary significantly during the past ~5 kyr in response to tectonics. Incremental tectonic uplift is retrieved from terrace incision corrected for sedimentation at the mountain front, and is used to derive the incremental shortening since terrace abandonment. Downstream, within the Coastal Plain, the Tsengwen river reaches its base level and aggrades. Sedimentary facies within boreholes of the Coastal Plain record vertical displacements relative to sea level, spatially consistent with potential blind active faults. When corrected for eustatic variations, these data allow for quantifying tectonic uplift rates within the Coastal Plain over the last ~20 kyr. Taken altogether, our quantitative analysis of the Tsengwen river record, from terrace incision to dowsntream aggradation, reveals that the most frontal active faults absorb a shortening rate of at least ~35 mm/yr, that is most of - if not all - the shortening rate to the absorbed across the whole mountain range

    The Thermosiphon Cooling System of the ATLAS Experiment at the CERN Large Hadron Collider

    No full text
    The silicon tracker of the ATLAS experiment at CERN Large Hadron Collider will operate around –15°C to minimize the effects of radiation damage. The present cooling system is based on a conventional evaporative circuit, removing around 60 kW of heat dissipated by the silicon sensors and their local electronics. The compressors in the present circuit have proved less reliable than originally hoped, and will be replaced with a thermosiphon. The working principle of the thermosiphon uses gravity to circulate the coolant without any mechanical components (compressors or pumps) in the primary coolant circuit. The fluorocarbon coolant will be condensed at a temperature and pressure lower than those in the on-detector evaporators, but at a higher altitude, taking advantage of the 92 m height difference between the underground experiment and the services located on the surface. An extensive campaign of tests, detailed in this paper, was performed using two small-scale thermosiphon systems. These tests confirmed the design specifications of the full-scale plant and demonstrated operation over the temperature range required for ATLAS. During the testing phase the system has demonstrated unattended long-term stable running over a period of several weeks. The commissioning of the full scale thermosiphon is ongoing, with full operation planned for late 2015
    corecore