1,443 research outputs found

    Theory of fluorescence induction in photosystem II: derivation of analytical expressions in a model including exciton-radical-pair equilibrium and restricted energy transfer between photosynthetic units

    Get PDF
    The theoretical relationships between the fluorescence and photochemical yields of PS II and the fraction of open reaction centers are examined in a general model endowed with the following features: i) a homogeneous, infinite PS II domain; ii) exciton-radical-pair equilibrium; and iii) different rates of exciton transfer between core and peripheral antenna beds. Simple analytical relations are derived for the yields and their time courses in induction experiments. The introduction of the exciton-radical-pair equilibrium, for both the open and closed states of the trap, is shown to be equivalent to an irreversible trapping scheme with modified parameters. Variation of the interunit transfer rate allows continuous modulation from the case of separated units to the pure lake model. Broadly used relations for estimating the relative amount of reaction centers from the complementary area of the fluorescence kinetics or the photochemical yield from fluorescence levels are examined in this framework. Their dependence on parameters controlling exciton decay is discussed, allowing assessment of their range of applicability. An experimental induction curve is analyzed, with a discussion of its decomposition into alpha and beta contributions. The sigmoidicity of the induction kinetics is characterized by a single parameter J related to Joliot's p, which is shown to depend on both the connectivity of the photosynthetic units and reaction center parameters. On the other hand, the relation between J and the extreme fluorescence levels (or the deviation from the linear Stern-Volmer dependence of 1/phi f on the fraction of open traps) is controlled only by antenna connectivity. Experimental data are consistent with a model of connected units for PS II alpha, intermediate between the pure lake model of unrestricted exciton transfer and the isolated units model

    Investigation of the effect of aggregates' morphology on concrete creep properties by numerical simulations

    Get PDF
    International audiencePrestress losses due to creep of concrete is a matter of interest for long-term operations of nuclear power plants containment buildings. Experimental studies by Granger (1995) have shown that concretes with similar formulations have different creep behaviors. The aim of this paper is to numerically investigate the effect of size distribution and shape of elastic inclusions on the long-term creep of concrete. Several microstructures with prescribed size distribution and spherical or polyhedral shape of inclusions are generated. By using the 3D numerical homogenization procedure for viscoelastic microstructures proposed by Šmilauer and Bažant (2010), it is shown that the size distribution and shape of inclusions have no measurable influence on the overall creep behavior. Moreover, a mean-field estimate provides close predictions. An Interfacial Transition Zone was introduced according to the model of Nadeau (2003). It is shown that this feature of concrete's microstructure can explain differences between creep behaviors

    Analysis of hepatitis C virus RNA dimerization and core–RNA interactions

    Get PDF
    The core protein of hepatitis C virus (HCV) has been shown previously to act as a potent nucleic acid chaperone in vitro, promoting the dimerization of the 3′-untranslated region (3′-UTR) of the HCV genomic RNA, a process probably mediated by a small, highly conserved palindromic RNA motif, named DLS (dimer linkage sequence) [G. Cristofari, R. Ivanyi-Nagy, C. Gabus, S. Boulant, J. P. Lavergne, F. Penin and J. L. Darlix (2004) Nucleic Acids Res., 32, 2623–2631]. To investigate in depth HCV RNA dimerization, we generated a series of point mutations in the DLS region. We find that both the plus-strand 3′-UTR and the complementary minus-strand RNA can dimerize in the presence of core protein, while mutations in the DLS (among them a single point mutation that abolished RNA replication in a HCV subgenomic replicon system) completely abrogate dimerization. Structural probing of plus- and minus-strand RNAs, in their monomeric and dimeric forms, indicate that the DLS is the major if not the sole determinant of UTR RNA dimerization. Furthermore, the N-terminal basic amino acid clusters of core protein were found to be sufficient to induce dimerization, suggesting that they retain full RNA chaperone activity. These findings may have important consequences for understanding the HCV replicative cycle and the genetic variability of the virus

    Prevalence and mechanism of adverse reactions to colistin in patients with cystic fibrosis

    Get PDF

    Citizen Science Time Domain Astronomy with Astro-COLIBRI

    Full text link
    Astro-COLIBRI is an innovative tool designed for professional astronomers to facilitate the study of transient astronomical events. Transient events - such as supernovae, gamma-ray bursts and stellar mergers - are fleeting cataclysmic phenomena that can offer profound insights into the most violent processes in the universe. Revealing their secrets requires rapid and precise observations: Astro-COLIBRI alerts its users of new transient discoveries from observatories all over the world in real-time. The platform also provides observers the details they need to make follow-up observations. Some of the transient phenomena available through Astro-COLIBRI are accessible by amateur astronomers and citizen scientists. A subset of the features dedicated to this growing group of users are highlighted here. They include the possibility of receiving only alerts on very bright events, the possibility of defining custom observer locations, as well as the calculation of optimized observation plans for searches for optical counterparts to gravitational wave events.Comment: Proceedings Atelier Pro-AM Gemini, Journ\'ees SF2A 2023. arXiv admin note: text overlap with arXiv:2308.0704

    Global patterns of β-diversity along the phylogenetic time-scale : the role of climate and plate tectonics

    Get PDF
    Aim: We aimed to assess the relative influence of the historical and contemporary processes determining global patterns of current \u3b2-diversity. Specifically, we quantified the relative effects of contemporary climate and historical plate tectonics on \u3b2-diversity at different phylogenetic scales. Location: Global. Time Period: Contemporaneous. Major taxa studied: Mammals and birds. Methods: We analysed the current \u3b2-diversity patterns of birds and mammal assemblages at sequential depths in the phylogeny, that is, from the tips to deeper branches. This was done by slicing bird and mammal phylogenetic trees into 66 time slices of 1 Ma (from 0 to 65 Ma) and recording the branches within each slice. Using global distribution data, we defined the branches\u2019 geographical distribution as the union of the corresponding downstream species distributions. For each time slice, we (a) computed pairwise \u3b2-diversity across all the grid cells for the whole world and (b) estimated the correlation between this \u3b2-diversity matrix and contemporary climatic and geographical distances, and past geological distances, a proxy for plate tectonics. Results: Contemporary climate best explained the \u3b2-diversity of shallow branches (i.e., species). For mammals, the geographical isolation of landmasses generated by plate tectonics best explained the \u3b2-diversity of deeper branches, whereas the effect of past isolation was weaker for birds. Main conclusions: Our study shows that the relative influence of contemporary climate and plate tectonics on the \u3b2-diversity of bird and mammal assemblages varies along the phylogenetic time-scale. Our phylogenetic time-scale approach is general and flexible enough to be applied to a broad spectrum of study systems and spatial scales

    Getting To Excellence: What Every Educator Should Know About Consequences of Beliefs, Attitudes, and Paradigms for the Reconstruction of an Academically Unacceptable Middle School

    Get PDF
    In this chapter a discussion of a salient dimension of the external environment in which today’s educators find themselves practicing – the policy context - is presented. Critical elements of this discussion include a truncated history of the encroachment on local control of the schools and the ensuing standardized-tests-based accountability and standardized testing movement. We also pay some attention to growing efforts to push back against these movements. We conclude this chapter with perspectives of a set of scholarly informants on quality, equity, and adequacy. Our effort in this chapter is to trace the political distance traveled from education defined by the diverse beliefs, values, attitudes and paradigms specific to the New England, Middle, and Southern colonies to the current emphasis on standardized-tests-based accountability, standards, and testing as they impact or fail to impact quality, equity, and adequacy – the context in which the Willie Ray Smith, Sr. Science and Medical Technology Magnet Middle School was previously branded academically unacceptable but now academically acceptable
    corecore