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Abstract

Aim: We aimed to assess the relative influence of the historical and contemporary processes

determining global patterns of current b-diversity. Specifically, we quantified the relative effects of

contemporary climate and historical plate tectonics on b-diversity at different phylogenetic scales.

Location: Global.

Time Period: Contemporaneous.

Major taxa studied: Mammals and birds.

Methods: We analysed the current b-diversity patterns of birds and mammal assemblages at

sequential depths in the phylogeny, that is, from the tips to deeper branches. This was done by

slicing bird and mammal phylogenetic trees into 66 time slices of 1 Ma (from 0 to 65 Ma) and

recording the branches within each slice. Using global distribution data, we defined the

branches’ geographical distribution as the union of the corresponding downstream species dis-

tributions. For each time slice, we (a) computed pairwise b-diversity across all the grid cells for

the whole world and (b) estimated the correlation between this b-diversity matrix and contem-

porary climatic and geographical distances, and past geological distances, a proxy for plate

tectonics.

Results: Contemporary climate best explained the b-diversity of shallow branches (i.e., species).

For mammals, the geographical isolation of landmasses generated by plate tectonics best explained

the b-diversity of deeper branches, whereas the effect of past isolation was weaker for birds.

Main conclusions: Our study shows that the relative influence of contemporary climate and plate

tectonics on the b-diversity of bird and mammal assemblages varies along the phylogenetic time-

scale. Our phylogenetic time-scale approach is general and flexible enough to be applied to a broad

spectrum of study systems and spatial scales.

K E YWORD S

biogeographical regions, biogeography, continental drift, geological time-scale, macroecology,

taxonomic scale

1 | INTRODUCTION

Elucidating the determinants of broad-scale b-diversity between

different regions of the world has long fascinated naturalists (e.g.,

Holt et al., 2013; Wallace, 1876). However, it is only recently that

the ever-increasing availability of global distribution databases

[e.g., International Union for Conservation of Nature (IUCN), Bird-

Life, Map Of Life] has made it possible to produce a comprehen-

sive synthesis of b-diversity patterns, especially for vertebrates

(e.g., Holt et al., 2013; Kreft & Jetz, 2010). A wide variety of
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potential processes may have generated these patterns. To unravel

the relative importance of these processes, there is a need for a

unification of multiple ecological and evolutionary approaches and

theories.

Niche-based theory of species distributions posits that environ-

mental conditions determine where species occur geographically,

emphasizing the importance of environmental filtering (Chase & Lei-

bold, 2003; Currie et al., 2004; Soininen, 2010). This would there-

fore mean that assemblages which experience similar climatic

conditions would also exhibit similar species compositions (i.e., low

b-diversity). There is, however, ample evidence that assemblages

located in similar bioclimatic regions on different continents often

differ not only in species composition, but also in phylogenetic com-

position (Holt et al., 2013). This apparent discrepancy may be

explained by the history of lineage dispersal and diversification over

evolutionary time (Flynn, 1998; Ronquist & Sanmartín, 2011; Simp-

son, 1980). If a given ancestor was constrained to a region of the

globe (e.g., to a particular continent that was isolated in the past), its

descendants might also be restricted to this particular region even if

suitable climatic conditions exist elsewhere (Lomolino, Riddle,

Whittaker, & Brown, 2010). In short, although both niche theory and

dispersal history can predict how the structure of species assemb-

lages might change over broad-scale climatic and geographical

gradients, their respective influence is not fully understood and has

not yet been properly tested.

By describing the historical flow of lineage diversification, phy-

logenies represent a window looking back through evolutionary time.

Therefore, one potential avenue for assessing the relative influence

of contemporary climate versus historical dispersal on diversity

distribution is to study the geographical pattern of phylogenetic

b-diversity (Davies & Buckley, 2012; Graham & Fine, 2008). It has

been hypothesized that contemporary environmental filtering and

historical dispersal limitations may have left an imprint on patterns of

current b-diversity, but that their effects can be perceived only at

certain depths along the phylogenetic time-scale (e.g., Duarte et al.,

2014; Graham & Fine, 2008). However, global tests of this hypothe-

sis are still lacking. Here, we aim to do so by asking a first question:

do contemporary geographical distances (which cause dispersal

limitation) and climatic gradients influence current patterns of

b-diversity at different phylogenetic time-scales? One prediction is

that the current b-diversity of deep branches correlates better with

climatic distances, whereas the b-diversity of shallow branches might

correlate with geographical distances (interpreted here as a legacy of

past dispersal limitation). This prediction should be supported if evo-

lutionary climatic niche divergence, driven by adaptation to past cli-

mate, has promoted the emergence of ancestral lineages (producing a

correlation between b-diversity of deep branches and climatic

distance; see, e.g., swallowtail butterflies, Condamine, Sperling,

Wahlberg, Rasplus, & Kergoat, 2012). Then, in each of the climatic

regimes, allopatric (geographical) speciation and climatic niche con-

servatism may have further driven diversification, producing a corre-

lation between shallow branches and geographical distance. An

alternative prediction stipulates that geographical distances correlate

better with the current b-diversity of deep branches, whereas recent

climatic and habitat distances correlate better with that of current

shallow branches. This alternative prediction should be supported if

dispersal events had brought an ancestral lineage to a new region

where they further diversified into different climatic regimes or

habitats [i.e., recent adaptation to local climate or habitat, e.g., tetrag-

natha spiders in Hawaï (Gillespie, 2004) or anoles lizards in the

Caribbean (Losos, 2009)].

Regardless of which hypothesis may apply, there is a need to

account for past geological events that have influenced past migration

routes and, possibly, current b-diversity of deep branches. Continents

have not been geographically stable over evolutionary time, and in

some parts of the world their movement has created barriers, whereas

in other parts it has facilitated dispersal among assemblages. Recent

plate tectonic models based on magnetic anomalies and ocean seafloor

spread reconstructions allow the accurate reconstruction of continental

movements across geological times (Boyden et al., 2011; Seton et al.,

2012; Williams, M€uller, Landgrebe, & Whittaker, 2012). The develop-

ment of such models offers a unique opportunity to test quantitatively

the influence of plate tectonics on current global terrestrial b-diversity

of vertebrates, but this has not yet been conducted (but see Leprieur

et al. (2016) for a marine perspective). In particular, if ancient dispersal

is more likely between continents that were close in the past, we

expect higher deep branch similarity between these current assemb-

lages compared with current assemblages whose geographical posi-

tions were further apart in the past. This is, for example, the case for

the southern parts of Australia, Africa and South America that harbour

some common deep branches because in the past they formed the

supercontinent Gondwana (Lomolino et al., 2010). Here, we aim to test

this prediction by asking our second question: does the past geographi-

cal configuration of continents better explain the current b-diversity of

deep branches than the contemporary configuration of continents?

In order to answer our two questions, we coupled a recent frame-

work [b-diversity through time (BDTT); Groussin et al. 2017] that

breaks down conventional measures of phylogenetic b-diversity along

the phylogenetic time-scale (producing a decomposed phylogenetic

b-diversity profile called a BDTT profile) with palaeogeographical

reconstructions. Using phylogenetic and current distributional data for

most mammals and birds of the world (c. 4,600 mammals and c. 9,900

birds), as well as plate tectonic models, we found that contemporary

climate and the contemporary and historical configuration of conti-

nents affect assemblage b-diversity at different phylogenetic time-

scales, shedding light on our understanding of the factors determining

the distribution of biological diversity.

2 | METHODS

2.1 | Distribution data

For mammals, we used the distribution maps provided by the Mammal

Red List Assessment (http://www.iucnredlist.org/) for 4,616 species.

For birds, breeding ranges distribution maps were extracted from
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BirdLife (http://www.birdlife.org/) for 9,993 species. The best resolu-

tion at which these maps should be used is still under discussion in the

literature, so we decided on the 200 km 3 200 km resolution that is

most commonly used at the global scale (Holt et al., 2013; Hurlbert &

Jetz, 2007). The total number of grid cells was 3,646. Domestic and

aquatic mammals were excluded from the analyses.

2.2 | Climatic and geographical data

We characterized global contemporary climate using the first two axes

of a principal components analysis (PCA) applied to the 19 bioclimatic

variables in the Worldclim database (Hijmans, Cameron, Parra, Jones, &

Jarvis, 2005). These axes together represented 80% of the total vari-

ability of the bioclimatic variables and were mainly related to mean

annual temperature and precipitation seasonality, respectively. To

quantify the effect of plate tectonics on b-diversity, we first derived

the geographical positions of our grid cells along a geological time-scale

using a global plate motion model derived from magnetic anomalies of

the oceanic sea floor (Seton et al., 2012). This is possible because the

global magnetic field has been reversed many times in the earth his-

tory, and the oceanic crust (that is created at mid-ocean ridges) has

recorded these inversions, through the orientation of magnetic miner-

als in the newly formed crust. By measuring these recorded inversions

(magnetic ‘anomalies’) and linking them to a geomagnetic polarity time-

scale, it is possible to estimate the age of the sea floor to derive ocean

sea-floor spreading dynamic and estimate relative motion between

major tectonic plates. We used the GPLATE software program (Boyden

et al., 2011; Williams et al., 2012), which implements this model, to

obtain, for each million year from present back to 65 Ma, the past x

and y coordinates of each grid cell. For both climate and geography, we

then calculated the Euclidean distances between each pair of grid cells,

based on the first two axes of the climatic PCA axes, and using the

length of the shortest straight line between grid-cell positions (for both

past and present), respectively.

2.3 | Phylogenies

For mammals, we used a recent, time-calibrated, ultrametric phyloge-

netic tree (Bininda-Emonds et al., 2007; Fritz, Bininda-Emonds, & Pur-

vis, 2009). For birds, we used the Hackett back bone-based phylogeny

used by Jetz, Thomas, Joy, and Mooers (2012). In order to assess the

uncertainties associated with phylogenies, we used the first 100 trees

proposed by Jetz et al. (2012) for birds, and the 100 trees proposed by

Kuhn, Mooers, and Thomas (2011) for mammals. We updated the

mammal phylogenetic trees by replacing the Carnivora group with a

more recently published, highly resolved supertree (Nyakatura &

Bininda-Emonds, 2012). As it was computationally too heavy to re-run

the whole analysis for each of the 100 trees, the tree uncertainty anal-

ysis was performed on only a subset of 200 out of 3,646 grid cells. In

order to sample the climatic and the geographical space in a represen-

tative manner, we used the cube method (Deville, 2004) based on the

two climatic PCA axes and the contemporary geographical position of

each grid cell (Supporting Information Appendix S1). The results

obtained with this subsampling design were similar to those based on

the whole dataset (see Supporting Information Appendix S2), so we

also present the subsampling results in the main text.

2.4 | b-Diversity

2.4.1 | Species b-diversity

To characterize the species b-diversity between two assemblages, we

used the Simpson metric (Simpson, 1943):

b 5
min b; cð Þ

a1min b; cð Þ (1)

where a is the number of species shared by the two grid cells, and b

and c represent the number of species unique to each grid cell. The

Simpson metric is the true turnover component (Baselga, 2010) of the

classical Sørensen metric and is also known as ‘spatial turnover’ (Gaston

& Blackburn, 2008). Importantly, this metric quantifies the degree of

replacement of species between two sites, while being independent of

species richness differences between assemblages (Baselga, 2010). In

this paper, we will refer to it simply as species b-diversity.

2.4.2 | Decomposition through time (along the phylogenetic

time-scale)

For a given metric, conventional measurements typically rely on a single

number to describe the b-diversity between two assemblages. This

number may reflect species b-diversity (Baselga, 2010, eq. 1; Simpson,

1943) or branch length b-diversity if a phylogeny is used (i.e., phyloge-

netic b-diversity; see, e.g., Leprieur et al., 2012). The analysis of species

b-diversity patterns cannot establish the importance of factors influenc-

ing the current distribution of deep branches. For example, two regions

that have no species in common (100% species b-diversity) can in real-

ity be composed of the same deeper branches (i.e., 0% deeper branches

b-diversity). Alternatively, phylogenetic b-diversity averages b-diversity

across the temporal range spanned by the phylogeny, thus oversimplify-

ing the temporal complexity of diversity patterns. Therefore, relying on

a single metric to describe assemblage b-diversity may make it difficult

to disentangle the relative influence of the factors in play on a different

phylogenetic time-scale (Cavender-Bares & Reich, 2012; Duarte et al.,

2014; Groussin et al., 2017; Levin, 1992; Mazel et al., 2016).

To overcome this issue, we use a framework to detect the phyloge-

netic time-scale at which a given factor had the greatest influence on

the b-diversity of branches between assemblages (Groussin et al.,

2017; and Figure 1). The framework computes b-diversity between

assemblages at different time periods along the phylogenetic time-scale

(Cavender-Bares & Reich, 2012). For example, if we consider a given

time period ST (e.g., one vertical grey line in Figure 1), initially, the phylo-

genetic tree is pruned to depth T by collapsing all descendent leaves of

each of the branches encountered by ST. The geographical distribution

of these branches is calculated as the union of the distributions of their

descending leaves (Borregaard et al., 2014). Importantly, this approach

does not intend to estimate the geographical ranges of this branch in

the past (i.e., its ancestral geographical range), but simply its current

extent (as generally assumed when studying patterns of a or b
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phylogenetic diversity). We thus obtain a branch 3 site matrix that can

be used to quantify b-diversity (see Equation 1) for the period ST. By

dividing the phylogenetic tree into discrete time periods from the leaves

to the root of the tree, the BDTT method provides a profile of

b-diversity through time that makes it possible to separate shallow (e.g.,

species, genera) versus deep (e.g., families, orders) b-diversity, by break-

ing down conventional measurements of phylogenetic b-diversity (i.e.,

producing a decomposed phylogenetic b-diversity profile or BDTT pro-

file). BDTT profiles were also computed for each order of the two

groups independently, in order to explore the potential heterogeneity

of responses across whole bird and mammal trees. The BDTT approach

is conceptually similar to the classical analysis of b-diversity along the

taxonomic scale (e.g., Kreft & Jetz, 2010; Lomolino et al., 2010), but it

has the additional advantage of being anchored in an explicit geological

time-scale.

2.4.3 | Visualizing assemblage composition through

phylogenetic scales

In order to illustrate assemblage composition across the grid cells and

along the phylogenetic time-scale, we used non-metric multidimen-

sional scaling (hereafter NMDS; Minchin, 1987), a robust, nonparamet-

ric method for representing b-diversity in a low-dimensional space

(Holt et al., 2013). We ran the NMDS for five different time periods (0,

15, 30, 45 and 65 Ma) using 20 starting points to avoid local minima,

one unique phylogenetic tree and all 3,646 grid cells. To link the

different ordination coordinates obtained for different phylogenetic

time-scales, we started from the species (e.g., 0 Ma) ordination and

rotated the 15 Ma time period ordination to maximize correspondence

between these two ordinations (function procrustes of the vegan pack-

age; Oksanen et al., 2016). We iteratively performed this procedure

until the last time period. This resulted in an illustration where a single

grid cell has five sets of coordinates corresponding to five different

phylogenetic time periods. With a view to providing a simple interpre-

tation, we also grouped the grid cells according to 11 biogeographical

realms (as in Holt et al., 2013). NMDS was calculated using the

metaMDS function of the vegan R package.

2.5 | Linking b-diversity profiles with geography and

climate

We used multiple regression on distance matrices (MRM; Lichstein,

2006) with randomization tests to link the BDTT profiles statistically to

geographical (past and contemporary) and climatic (contemporary)

distances between grid cells and to assess the significance of the

relationships. We used both Pearson and Spearman rank correlation

coefficients to assess the strength of the correlation, at each time

period T, to obtain correlation profiles through time. We then used

variance partitioning to extract the unique and shared effects of

climate and geography (Legendre, 2007). When presenting the results,

we focused on the unique effect of geography and the total effect for

climate (unique climate plus shared affect), because geographically

structured climate effects should be considered as indirect climatic

effects (as climatic variables are strongly structured geographically at

large scales). Furthermore, in order to test the extent to which these

results were driven by a specific continent, we computed these correla-

tion profiles while removing each continent one by one.

2.6 | Effects of the hierarchical nature of phylogenies

on BDTT profiles

With the BDTT approach, the branches used to compute b-diversity

progressively delineate larger groups of species when moving towards

the root of the phylogeny (Figure 1). Larger groups of species have nat-

urally larger geographical ranges, so they may not differ much in terms

of climate, which inevitably means that the climatic correlation profile

will increase towards the leaves of the tree. A null model approach was

used to assess the impact of this effect on our results. We shuffled

species identity on the phylogenetic trees of the two taxa (mammals

and birds), then recomputed the BDTT profiles and their correlation

with climate and geography. By repeating this procedure 100 times, we

obtained a distribution of correlation values under the null hypothesis.

Comparing the observed and null profiles of correlation made it possi-

ble to distinguish between biological and statistical effects (Leprieur

et al., 2012; Weinstein et al., 2014). For each time period, comparisons

between observed correlations and the correlations under the null

hypothesis were summarized using standard effect sizes [SES,

a. b.

(2)

(1)

c.

FIGURE 1 Theoretical example of the b-diversity through time
(BDTT) framework. The figure presents (a) a balanced phylogenetic
tree associated with (b) two hypothetical assemblages (1 and 2)
composed of distinct species and (c) the resulting BDTT profile
between 1 and 2 along the phylogenetic time-scale. The phyloge-
netic tree (a) contains 16 species, whose presence in assemblage 1
and/or 2 is depicted by a grey (assemblage 1) or black (assemblage
2) line in front of each tip (b). The BDTT profile and the phyloge-
netic tree are anchored in the same time-scale, with 11 vertical
time periods represented in light grey
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(observed correlation minus mean null correlations)/(SD of null correla-

tions)]. In addition, b-diversity was computed here with progressively

fewer and fewer units (i.e., using fewer internal phylogenetic branches

than tips), which might bias our results of correlation with climate and

geography. To test the sensitivity of our results to this potential bias,

we compared the R2 of climatic and spatial models at different depths,

but by keeping the same number of units when computing b-diversity.

Specifically, when we compared the R2 of the relationship between

climatic (or geographical) distances and b-diversity computed at depth

d versus species b-diversity, we subsampled species (100 repetitions)

in order to have the same number of species as branches at depth d.

This procedure should prove whether our results were biased or not by

the difference in the number of units used to compute b-diversity at

different depths. All the statistical analyses were carried out using the

R software program (R Development Core Team, 2015).

3 | RESULTS

Relating BDTT profiles of mammals and birds to contemporary climatic

and geographical distances shows that species b-diversity is signifi-

cantly and positively related to both climatic and geographical distan-

ces (p< .001; Figure 2). Conversely, deep branch b-diversity is always

significantly (and positively) related to contemporary geographical dis-

tances, but not to climatic distances (Figure 2). For both mammals and

birds, the correlation between contemporary geographical distance and

b-diversity is hump shaped along the phylogenetic time-scale, meaning

that geographical distances explain the b-diversity of deep branches

better than the b-diversity of species (Figure 2). This result is not

attributable to the spurious effect of the difference in the number of

units used to compute b-diversity at different depths of the tree (Sup-

porting Information Appendix S3). However, because of the non-

FIGURE 2 The relative effect of contemporary geographical and climatic distances on the b-diversity of branches through a phylogenetic

time-scale. The figure presents, for mammals (left) and birds (right), the variation of the strength of the squared Pearson’s correlation (R2; y
axis) between branch b-diversity and contemporary geographical (blue, ‘unique’ effect of geography) or climatic (yellow, ‘total’ effect for
climate (unique climate plus shared effect with geography)) distances along the phylogenetic time-scale at which branches are defined
(x axis). The uncertainty associated with the 100 phylogenetic trees used for the analyses is represented by the multiple correlation profiles.
Black lines correspond to a smoothed fit across all profiles. The distribution of stem ages for four standard taxonomic ranks (species,
genera, families and orders) is given along the same time-scale as the one used to define branches. Significant correlations for a given time
period (i.e., > 90% of the phylogenetic trees support a significant relationship at the 5% level) are indicated with a coloured dot below
(for climate) or above (for geography) the plots. The shaded area corresponds to the 95% confidence interval of a null model that
randomizes phylogenetic relationships but keeps species composition constant. The inset panels present the standard effect sizes (SES)
across phylogenetic scales (y axis5 SES; x axis5 phylogenetic scale, same as main plots)
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independence of the distribution of branches at different depths, it is

not possible to compare the correlation values directly between differ-

ent depths. Rather, difference of correlations between depths has to

be compared with a null expectation, given the tree shape. We found

that, with such a null expectation, geographical distances never explain

the b-diversity of deep branches better than species b-diversity (com-

pare observed and null correlation profiles in Figure 2). In other words,

there is a significant geographical signal on deep branches (SES are

highly positive and > 2; see inset panels in Figure 2). Interestingly, in

deep mammalian phylogenetic branches, b-diversity is more related to

geographical distance compared with deep bird phylogenetic branches

(e.g., for time slices>40 Ma), in terms of either raw correlation (Figure

2) or SES (insets of Figure 2). Note that the phylogenetic time-scale

used here is related to the standard taxonomic scale (i.e., on average

species are younger than genera, genera are younger than families,

etc.; see distributions of taxonomic rank ages on the phylogenetic

time-scale in Figure 2).

The positive correlations between climatic distances and

b-diversity are similar for both groups and increase from deep to shal-

low branches, meaning that climate distances explain the b-diversity of

species better than that of deep branches (Figure 2). This is expected

under our null model, which shuffles species identities on the phyloge-

netic tree (compare null and observed profiles in Figure 2), but the

observed profiles lie significantly higher than the null profiles, showing

that our results are not merely statistical bias [i.e., standard effect sizes

are (sometimes significantly) positive; see inset panels of Figure 2].

These results are also robust to tree uncertainty (comparison of multi-

ple observed profiles in Figure 2), to the relaxation of the assumption

of a linear relationship between branch b-diversity and geographical or

climatic distances (Supporting Information Appendix S4), and are also

observed when some continents are removed from the analysis

(Supporting Information Appendix S5). Nevertheless, the overall trends

obscure some of the varied responses across the different parts of

each phylogenetic tree. Indeed, the breakdown of b-diversity within

orders shows that the geographical correlation profiles along the phylo-

genetic time-scale are more variable through time than their climatic

counterparts. Climatic correlation profiles often increase the closer

they get to a recent phylogenetic time-scale, whereas geographical

effects show distinct shapes across orders (Supporting Information

Appendix S6). For example, bats show an increasingly strong correla-

tion profile, meaning that deep bat branches have less geographical

structure than shallow branches, whereas the opposite pattern is found

for rodents.

When using tectonic plate models to assess the effects of contem-

porary versus past geographical distances on branch b-diversity, we

find past geographical distances to be the best predictor of the

b-diversity of deep branches for mammals, but not for birds (Figure 3

and Supporting Information Appendix S7). Interestingly, the results for

mammals hold only when all continents are included in the analysis.

When Australia is excluded, the overwhelming effect of past distances

on deep branch b-diversity disappears (Supporting Information

Appendix S8). Australia represents an important zoogeographical realm

because it contains a unique set of species and deep branches

(Figure 4). It should be noted that the compositional uniqueness of

deep branches is, by default, expected to be lower than that of species

owing to the hierarchical structure of the phylogenetic tree. However,

it appears that Australia shows relatively greater uniqueness in deep

branches than in shallow ones (the Australian arrow in Figure 4 points

to the centre of the graph). Compared with other continents, Australia

was geographically more isolated in the past, which explains why this

continent drives the overall pattern of congruence between BDDT and

past distances.

4 | DISCUSSION

On the species scale, b-diversity relates to contemporary geographical

and climatic distances. The strong relationship between geographical

distance and b-diversity reflects the existence of biogeographical

realms (Holt et al., 2013; Wallace, 1876). It is also consistent with the

hypothesis that biogeographical realms are, at least in part, the out-

come of historical factors, such as past dispersal limitations (e.g., Flynn,

1998; Lomolino et al., 2010; Woodburne, 2010). The significant

positive relationship between b-diversity and climatic distances most

probably indicates that climatic filtering has a strong influence. Climatic

filtering implies that ambient climatic conditions determine which

species can and cannot persist in a specific region, given their inherent

climatic tolerance (Buckley & Jetz, 2008; Currie et al., 2004). However,

our results indicate that contemporary geographical distances explain

b-diversity better than climate for both birds and mammals, suggesting

that, at this scale, dispersal limitations have a greater influence than

climatic filtering. This is in line with the argument that, at the global

scale, faunas of different continents are often very dissimilar because

they have been isolated for a long time, with relatively few dispersal

events (Flynn, 1998; Holt et al., 2013; Lomolino et al., 2010; Penone

et al., 2016; Simpson, 1980). One alternative explanation is that the cli-

matic variables used here do not perfectly describe the climatic condi-

tions actually experienced by animals, and that geographical distances

incorporate differences in additional climatic or ecological conditions

that potentially constrain branches to different regions (Anderson

et al., 2011). However, it remains complicated to tease apart these two

explanations using a correlative approach as used here.

In this study, we predicted that the relative influence of recent cli-

mate filtering and historical dispersal legacies (e.g., biogeographical his-

tory; Ronquist & Sanmartín, 2011) on b-diversity patterns might vary

along the phylogenetic time-scale. Breaking phylogenetic b-diversity

down along a phylogenetic time-scale (i.e., producing BDTT profiles)

reveals the relative influence of geography and climate on branch

distributions. For mammals and birds, contemporary geographical

distances explain the b-diversity of deep branches better than the

b-diversity of shallow branches, whereas climatic distances explain the

b-diversity of species better than that of deep branches, compared

with a null expectation. This result might be caused by ancient dispersal

events followed by species diversifying in relative isolation across

climatic gradients. Similar sequences of events have already been
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documented in several groups; for example, lemur primates occur only

in Madagascar because of ancient dispersal events followed by diversi-

fication into different climatic regimes of the island (Ganzhorn,

Goodman, Nash, & Thalmann, 2006). Our study generalizes these case-

specific findings by demonstrating that contemporary geographical and

climatic distances do not influence branch distributions at the same

phylogenetic time-scale. Although contemporary climate best explains

the b-diversity of shallow, but not deep branches, we also found that

the correlation between deep branch b-diversity and climatic distance

was higher than expected under our null model. This is probably

because species climatic niches harbour some degree of phylogenetic

signal (Cooper, Freckleton, & Jetz, 2011). However, the two PCA axes

used here represent strong but complex climatic gradients. Two regions

may have the same broad climate but still harbour non-null climatic dis-

tance from the PCA axes. These relatively fine-scale climatic species

affinities may not be conserved at deep phylogenetic scales, which

might partly explain why climatic distances mainly explain species

b-diversity. Although beyond the scope of this study, an interesting

avenue for future research could be to analyse correlation profiles

across phylogenetic scales and climatic scales (e.g., using biomes

instead of the climatic variables used here; see Penone et al., 2016).

The second question we asked was whether past geographical dis-

tances, as shaped by plate tectonics, can explain the b-diversity of

deep branches better than contemporary distances. This is true for

mammals, but not for birds (Figure 2). This mammalian particularity is

driven by the singular evolution of Australian fauna, which shows the

greatest geographical and branch isolation when we go back in time.

When Australia was removed from our analyses, past geographical dis-

tances no longer strongly influenced the b-diversity of deep branches.

One possibility is that the overall dispersal along geological time-scales

was not constrained by past geographical distances; for example, when

land bridges reconnected land masses that had remained isolated for

millions of years and/or extinction events erased the signal of tectonic

isolation. For instance, this is the case for the Great American Biotic

Interchange (GABI) that recently brought new mammalian orders, such

as cetartiodactyls and carnivorans, to South America (i.e., in the last 3–

15 Ma; Bacon et al., 2015; Webb, 2006; Woodburne, 2010) or during

the complex biogeographical history of horses (e.g., Cantalapiedra,

Prado, Hern�andez Fern�andez, & Alberdi, 2017). As a result of these

recent events, the b-diversity of deep (e.g., at a time slice of 30 Ma in

the current phylogeny) mammalian branches that we observe today

between, for example, South and North America does not actually rep-

resent what the b-diversity looked like 30 Ma between these conti-

nents. Indeed, South America harboured a unique set of high

taxonomic ranks in the past (and so a high b-diversity with, e.g., North

America) because it has been isolated for most of its history (Flynn,

FIGURE 3 The imprint of plate tectonics on b-diversity. The figure shows the variation of the ranks of the squared Pearson’s correlation
(see the colours in the legend) between branch b-diversity and geographical distances (‘unique’ effect of geography, without contemporary
climatic effect) along the phylogenetic time-scale at which branches are defined (x axis) and the date at which geographical distances are
computed (y axis). More specifically, for each phylogenetic time period for which b-diversity is computed (x axis), we ranked the different
past geographical distances (i.e., from 0 to 65 Ma) according to their squared Pearson correlation. The ranks presented are the median over
100 phylogenetic trees, with the red colour indicating a better relative fit. Note that ranks are computed across time-scales of geographical
distances (y axis), for a given phylogenetic time period for which b-diversity is computed (x axis), so the colours should be compared within
a given x coordinate (i.e., vertically). Palaeogeographical positions of continents are depicted to the left of the y axis (Blakey, 2008), along
with epochs of the geological time-scale. The distribution of stem ages from four standard taxonomic ranks (species, genera, families and
orders) is given along the time-scale used to define branches below the x axis
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1998; Simpson, 1980). However, the combined effect of recent

migration (i.e., the GABI) and high extinction rates of native

lineages (Simpson, 1980) removed the signal of deep branch

b-diversity (i.e., the current b-diversity of deep branches between

North and South America is relatively lower today). Conversely,

Australia did not experience these secondary connections with other

continents followed by massive migration and extinction events, so it

retained most of its unique deep branches and thus drove the observed

pattern in mammals. The BDTT framework is a descriptive approach

that aims to quantify contemporary b-diversity along the phylogenetic

scale, and thus does not explicitly incorporate past extinctions or dis-

persal events. However, it could be extended to determine the relative

importance of recent versus ancient dispersal by taking into account

inferred dispersal events (e.g., using ancestral range reconstruction

methods; Matzke, 2014; Ronquist & Sanmartín, 2011).

One noteworthy limitation of our approach is that our proxy for

historical connectivity measures only past geographical proximity and

ignores the location of dispersal barriers (e.g., oceans or mountains).

For example, connectivity may be significantly different between pairs

of grid cells at the same crow-fly distance, if one pair is separated by a

dispersal barrier, whereas there are no barriers for the second pair.

Future studies could test alternative measures of connectivity, such as

least cost distances (Weinstein et al., 2014), considering the different

barrier effects of oceans or regions with unsuitable climatic conditions

(e.g., deserts or sea-level variations). Another avenue for future

research would be to account for the past distribution of climates to

track back the potential corridors of suitable climate for lineages

through time. However, maps of past climates are scarce and highly

uncertain, even for relatively recent time periods (Mauri, Davis, Collins,

& Kaplan, 2014). Moreover, estimating the habitat suitability of poten-

tial corridors over time for > 15,000 species is challenging, as a priori

we do not know the climatic affinities of deep branches, nor their

migrating abilities. Consequently, although our approach has some

limitations, it represents an important step towards integrating deep

geological factors into our understanding of extant global diversity pat-

terns (see also Svenning, Eiserhardt, Normand, Ordonez, and Sandel,

2015) for the effect of more recent geological and climatic processes

on diversity distribution).

We found some differences between mammalian and avian

decomposed phylogenetic b-diversity patterns, which are probably

attributable to their different dispersal abilities. The effect of contem-

porary geographical distance on deep branches is relatively greater for

mammals than for birds, and this is even greater when past distances

are considered (see SES values in Figure 2). This may suggest that high

dispersal abilities and repeated colonization events in bird lineages

have limited (a) the geographical signal of in situ diversification and (b)

the signal of past plate tectonics over evolutionary time. However, this

is not always the case. It is well known that some avian groups of spe-

cies harbour a Gondwanian distribution (e.g., Palaeognathae: ratites

and tinamous). In our main analysis, we assumed that geographical and

climatic effects could act differently along the phylogenetic time-scale,

but not on different parts of the tree, thus neglecting heterogeneity

FIGURE 4 Mammalian assemblage compositions along a phylogenetic time-scale. The figure presents the non-metric multidimensional scal-
ing (NMDS) ordination coordinates for mammalian assemblage compositions defined at different phylogenetic time-scales. Each assemblage
is represented by a small arrow that links the five coordinates through time (0, 215, 230, 245 and 265 Ma; see key). Arrows are coloured
according to the biogeographical realm to which they belong (cf. inset map), and ordination coordinates averaged across biogeographical
realms are shown as large arrows
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within the tree. Repeating our analyses separately for all major

mammalian and avian orders showed that orders with a clear disjoint

distribution between continents harboured similar correlation patterns

between BDTT and contemporary geography. For example, the

strength of the relationship between primate b-diversity and geogra-

phy showed a clear decrease from deep to shallow b-diversity, a pat-

tern that matches the geographical disjunction of major primate

branches (New versus Old World monkeys) and that is potentially

linked to dispersal limitation legacies. In addition, the geographical

effect varied more through phylogenetic scales than the climatic effect,

a pattern that is potentially explained by highly variable dispersal

capacity between orders (e.g., bats versus rodents). The fact that the

climatic profiles were more similar than geographical ones, both

amongst orders and between birds versus mammals, is consistent with

the deterministic nature of niche factors and the similar climatic niche

conservatism across the different groups.

In conclusion, our global analysis reveals the importance of consid-

ering the phylogenetic time-scale to describe and understand macro-

ecological patterns. While the phylogenetic time-scale is related to the

conventional taxonomic scale, the continuous BDTT approach offers

several key advantages compared with a taxonomic scale approach,

because it is transparent, not subject to arbitrary taxonomic assign-

ments (to genera, families or higher levels) and anchored in an explicit

and absolute geological time-scale. Importantly, the BDTT approach is

highly flexible and can be extended in several ways and used in multi-

ple fields. In macroecology, it could be interesting to study the link

between the decomposed phylogenetic b-diversity and geography and

climate across geographical and climatic scales, as it is known that

processes shaping diversity patterns also vary along these two scales.

To gain a better understanding of the importance of historical events

on the current distribution of biological diversity, the BDTT approach

could be coupled with ancestral area reconstruction or palaeoclimatic

data. For example, ancestral area reconstructions could be used to

measure the relative role of in situ diversification versus dispersal in

shaping the patterns of phylogenetic diversity across major landmasses.

Finally, the BDTT approach is not only useful for studying broad

geographical patterns, but could also be applied to local plant–animal

interaction networks (e.g., plants and their pollinators) or even to

microscopic systems.
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