161 research outputs found

    Solvatipn Of Excess Electrons In Supercritical Ammonia

    Get PDF
    Solvation of excess electrons in supercritical ammonia along the T = 450 K isotherm was investigated. Equilibrium aspects of solvation were analyzed using combined path integral-molecular dynamics techniques. Observations showed transition from localized to quasifree states at approximately one fourth of the triple point density.1191260446052Innovations in Supercritical Fluids, Science, and Technology (1995) ACS Symposium Series, 608. , edited by K. W. Hutchenson and N. R. Foster (American Chemical Society, Washington, D.C.)Me Hugh, M.A., Krukonis, V.J., (1986) Supercritical Fluid Extraction: Principles and Practice, , Butterworths, BostonKim, S., Johnston, K.P., (1987) ACS Symposium Series, 329. , Supercritical Fluids, Chemical, and Engineering Principles and Applications, edited by T. G. Squires and M. E. Paulatis (American Chemical Society, Washington, D.C.)Kim, S., Johnston, K.P., (1987) Ind. Eng. Chem. Res., 26, p. 1206Bennet, G.E., Johnston, K.P., (1994) J. Phys. Chem., 98, p. 441Peck, D.G., Mehta, A.J., Johnston, K.P., (1989) J. Phys. Chem., 93, p. 4297Johnston, K.P., Haynes, C., (1987) AIChE J., 33, p. 2017Giraud, V., Krebs, P., (1982) Chem. Phys. Lett., 86, p. 85Krebs, P., Hientze, M., (1982) J. Chem. Phys., 76, p. 5484Jou, F.-Y., Freeman, G.R., (1981) J. Phys. Chem., 85, p. 629Olinger, R., Schinderwolf, U., Gaathon, A., Jortner, J., (1971) Ber. Bunsenges. Phys. Chem., 75, p. 690Olinger, R., Hahne, S., Schinderwolf, U., (1972) Ber. Bunsenges. Phys. Chem., 76, p. 349Migus, A., Gaudel, Y., Martin, J.L., Antonetti, A., (1987) Phys. Rev. Lett., 58, p. 1559Long, F.H., Lu, H., Shi, X., Eisenthal, K.B., (1991) Chem. Phys. Lett., 185, p. 47Alfano, J.C., Walhout, P.K., Kimura, Y., Barbara, P.F., (1993) J. Chem. Phys., 98, p. 5996Kimura, Y., Alfano, J.C., Walhout, P.K., Barbara, P.F., (1994) J. Phys. Chem., 98, p. 3450Jahnke, J.A., Meyer, L., Rice, S.A., (1971) Phys. Rev. A, 3, p. 734Huang, S.S.S., Freeman, G.R., (1978) J. Chem. Phys., 68, p. 1355Floriane, M.A., Freeman, G.R., (1986) J. Chem. Phys., 85, p. 1603Coker, D.F., Berne, B.J., Thirumalai, D., (1987) J. Chem. Phys., 86, p. 5689Laria, D., Chandler, D., (1987) J. Chem. Phys., 87, p. 4088Space, B., Coker, D.F., Liu, Z.H., Berne, B.J., Martyna, G., (1992) J. Chem. Phys., 97, p. 2002Plenkiewicz, B., Frongillo, Y., Lopez-Castillo, J.-M., Jay-Gerin, J.-P., (1996) J. Chem. Phys., 104, p. 9053Lopez-Castillo, J.-M., Frongillo, Y., Plenkiewicz, B., Jay-Gerin, J.-P., (1992) J. Chem. Phys., 96, p. 9092Krebs, P., (1980) Chem. Phys. Lett., 70, p. 465Krebs, P., Giraud, V., Wantschick, M., (1980) Phys. Rev. Lett., 44, p. 211Sprik, M., Impey, R.W., Klein, M.L., (1985) J. Chem. Phys., 83, p. 5802Sprik, M., Klein, M.L., (1987) J. Chem. Phys., 87, p. 5987Sprik, M., Klein, M.L., (1988) J. Chem. Phys., 89, p. 1592Sprik, M., Klein, M.L., (1989) J. Chem. Phys., 91, p. 5665Marchi, M., Sprik, M., Klein, M.L., (1988) J. Chem. Phys., 89, p. 4918Barnett, R.N., Landman, U., Cleveland, C.L., Kestner, N.R., Jortner, J., (1988) Chem. Phys. Lett., 148, p. 249Sprik, M., Impey, R.W., Klein, M.L., (1986) Phys. Rev. Lett., 56, p. 2326Martyna, G.J., Klein, M.L., (1992) J. Chem. Phys., 96, p. 7662Laria, D., Skaf, M.S., (2002) J. Phys. Chem. A, 106, p. 8066Gaathon, A., Czapski, G., Jortner, J., (1972) J. Chem. Phys., 58, p. 2648Jortner, J., Gaathon, A., (1977) Can. J. Chem., 55, p. 1801Bausenwein, T., Bertagnolli, H., David, A., Goller, K., Zweier, H., Todheide, K., Chieux, P., (1994) J. Chem. Phys., 101, p. 672Kiselev, M., Kerdcharoen, T., Hannongbua, S., Heizinger, K., (2000) Chem. Phys. Lett., 327, p. 425Feynmann, R.P., (1972) Statistical Mechanics, , Addison-Wesley, ReadingImpey, R.W., Klein, M.L., (1984) Chem. Phys. Lett., 104, p. 579Rudge, M.R.H., (1978) J. Phys. B, 11, p. 1503(1978) J. Phys. B, 11, p. 2221Rudge, M.R.H., (1980) J. Phys. B, 13, p. 1269Jain, A., Thompson, D.G., (1982) J. Phys. B, 15, pp. L631(1983) J. Phys. B, 16, p. 1113(1983) J. Phys. B, 16, p. 2593Gianturco, F.A., (1991) J. Phys. B, 24, p. 4627Chandler, D., Wolynes, P.G., (1981) J. Chem. Phys., 74, p. 4078Tuckerman, M.E., Berne, B.J., Martyna, G.J., Klein, M.L., (1993) J. Chem. Phys., 99, p. 2796Martyna, G.J., Tuckerman, M.E., Tobias, D.J., Klein, M.L., (1996) Mol. Phys., 87, p. 1117Tuckerman, M.E., Hughes, A., Path Integral Molecular Dynamics: A Computational Approach to Quantum Statistical Mechanics (1998) Classical and Quantum Dynamics in Condensed Phase Simulations, , edited by B. J. Berne, G. Ciccotti, and D. F. Coker (World Scientific, Singapore), Chap. 14Ryckaert, J.-P., Ciccotti, G., Berendsen, H.J.C., (1977) J. Comput. Phys., 23, p. 327Webster, F., Rossky, P.J., Friesner, R., (1991) Comput. Phys. Commun., 63, p. 494Staib, A., Borgis, D., (1995) J. Chem. Phys., 103, p. 2642Yang, C.-Y., Wong, K.F., Skaf, M.S., Rossky, P.J., (2001) J. Chem. Phys., 114, p. 3598Schnitker, J., Rossky, P.J., (1987) J. Chem. Phys., 86, p. 3471Buback, M., Harder, W.D., (1977) Ber. Bunsenges. Phys. Chem., 81, p. 603Wallqvist, A., Martyna, G.J., Berne, B.J., (1988) J. Phys. Chem., 92, p. 1721Schwanz, B.J., Rossky, P.J., (1994) J. Phys. Chem., 101, p. 6902Schwartz, B.J., Rossky, P.J., (1994) J. Phys. Chem., 101, p. 6917Rossky, P.J., Nonadiabatic Quantum Dynamics Simulation Using Classical Baths (1998) Classical and Quantum Dynamics in Condensed Phase Simulations, , edited by B. J. Berne, G. Ciccotti, and D. F. Coker (World Scientific, Singapore), Chap. 22Herzberg, G., (1945) Infrared and Roman Spectra of Polyatomic Molecules, , Van Nostrand, PrincetonSchwartz, B.J., Rossky, P.J., (1996) J. Phys. Chem., 105, p. 6997Prezhdo, O.V., Rossky, P.J., (1996) J. Phys. Chem., 100, p. 17094Maroncelli, M., (1993) J. Mol. Liq., 57, p. 1Maroncelli, M., Kumar, P.V., Papazyan, A., (1993) J. Phys. Chem., 97, p. 13noteRe, M., Laria, D., (1997) J. Phys. Chem. A, 101, p. 1049

    Solvatipn of excess electrons in supercritical ammonia

    Get PDF
    Solvation of excess electrons in supercritical ammonia along the T = 450 K isotherm was investigated. Equilibrium aspects of solvation were analyzed using combined path integral-molecular dynamics techniques. Observations showed transition from localized to quasifree states at approximately one fourth of the triple point density.Fil:Rodriguez, J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Laria, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina

    Stochastic Comparisons of Two-Units Repairable Systems

    Full text link
    We consider two models of two-units repairable systems: cold standby system and warm standby system. We suppose that the lifetimes and repair times of the units are all independent exponentially distributed random variables. Using stochastic orders we compare the lifetimes of systems under different assumptions on the parameters of exponential distributions. We also consider a cold standby system where the lifetimes and repair times of its units are not necessarily exponentially distributed

    Nuclear quantum effects on the structure and the dynamics of [H2O]8 at low temperatures

    Get PDF
    We use ring-polymer-molecular-dynamics (RPMD) techniques and the semi-empirical q-TIP4P/F water model to investigate the relationship between hydrogen bond connectivity and the charac- teristics of nuclear position fluctuations, including explicit incorporation of quantum effects, for the energetically low lying isomers of the prototype cluster [H2O]8 at T = 50 K and at 150 K. Our results reveal that tunneling and zero-point energy effects lead to sensible increments in the magnitudes of the fluctuations of intra and intermolecular distances. The degree of proton spatial delocalization is found to map logically with the hydrogen-bond connectivity pattern of the cluster. Dangling hydro- gen bonds exhibit the largest extent of spatial delocalization and participate in shorter intramolecular O-H bonds. Combined effects from quantum and polarization fluctuations on the resulting individ- ual dipole moments are also examined. From the dynamical side, we analyze the characteristics of the infrared absorption spectrum. The incorporation of nuclear quantum fluctuations promotes red shifts and sensible broadening relative to the classical profile, bringing the simulation results in much more satisfactory agreement with direct experimental information in the mid and high fre- quency range of the stretching band. While RPMD predictions overestimate the peak position of the low frequency shoulder, the overall agreement with that reported using an accurate, parame- terized, many-body potential is reasonable, and far superior to that one obtains by implementing a partially adiabatic centroid molecular dynamics approach. Quantum effects on the collective dynam- ics, as reported by instantaneous normal modes, are also discussedFil: Videla, Pablo Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires; ArgentinaFil: Rossky, Peter J.. University of Texas at Austin; Estados UnidosFil: Laria, Daniel Hector. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Comision Nacional de Energia Atomica. Gerencia Quimica. CAC; Argentin

    A quantum molecular dynamics study of aqueous solvation dynamics

    Get PDF
    Ring polymer molecular dynamics experiments have been carried out to examine effects derived from nuclear quantum fluctuations at ambient conditions on equilibrium and non-equilibrium dynamical characteristics of charge solvation by a popular simple, rigid, water model, SPC/E , and for a more recent, and flexible, q-TIP4P/F model, to examine the generality of conclusions. In particular, we have recorded the relaxation of the solvent energy gap following instantaneous, ±e charge jumps in an initially uncharged Lennard-Jones-like solute. In both charge cases, quantum effects are reflected in sharper decays at the initial stages of the relaxation, which produce up to a ∼20% reduction in the characteristic timescales describing the solvation processes. For anionic solvation, the magnitude of polarization fluctuations controlling the extent of the water proton localization in the first solvation shell is somewhat more marked than for cations, bringing the quantum solvation process closer to the classical case. Effects on the solvation response from the explicit incorporation of flexibility in the water Hamiltonian are also examined. Predictions from linear response theories for the overall relaxation profile and for the corresponding characteristic timescales are reasonably accurate for the solvation of cations, whereas we find that they are much less satisfactory for the anionic case.Fil: Videla, Pablo Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires; ArgentinaFil: Rossky, Peter J.. University of Texas at Austin; Estados UnidosFil: Laria, Daniel Hector. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires; Argentina. Comision Nacional de Energia Atomica. Gerencia Quimica. CAC; Argentin

    Computer simulations of catanionic surfactants adsorbed at air/water interfaces: II. Full coverage

    Get PDF
    We extend our previous molecular dynamics experiments Rodriguez et al., J. Phys. Chem. B 109, 24427 (2005) to the analysis of the adsorption of catanionic surfactants at water/air interfaces, at a surfactant coverage close to that of the saturated monolayer: 30.3 Å2 per headgroup. The mixture of surfactants investigated corresponds to equal amounts of dodecytrimethylammonium DTA and dodecylsulfate DS. The structure of the interface is analyzed in terms of the local densities and orientational correlations of all relevant interfacial species. In accordance with experimental evidence, the DTA headgroups penetrate deeper into the aqueous substrate than the DS ones, although the average positions of all headgroups, with respect to the interface, lie in positions somewhat more external than the ones observed at lower coverages. Average tail tilts are close to 45°. The characteristics of the headgroup-water substrate correlations are also analyzed using a tessellation procedure of the interface. The density and polarization responses of the interfacial domains closest to the DS headgroups are enhanced, compared to those adjacent to the DTA detergents. Dynamical aspects related to the diffusion and to the orientational correlations of different water layers in close contact with the surfactant are also investigated.Fil: Clavero, Esteban Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Rodriguez, Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Laria, Daniel Hector. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentin

    Isotopic equilibria in aqueous clusters at low temperatures: Insights from the MB-pol many-body potential

    Get PDF
    By combining path-integrals molecular dynamics simulations with the accurate MB-pol potential energy surface, we investigate the role of alternative potential models on isotopic fractionation ratios between H and D atoms at dangling positions in water clusters at low temperatures. Our results show clear stabilizations of the lighter isotope at dangling sites, characterized by free energy differences ΔG that become comparable to or larger than kBT for temperatures below ∼75 K. The comparison between these results to those previously reported using the empirical q-TIP4P/F water model [P. E. Videla et al., J. Phys. Chem. Lett. 5, 2375 (2014)] reveals that the latter Hamiltonian overestimates the H stabilization by ∼25%. Moreover, predictions from the MB-pol model are in much better agreement with measured results reported for similar isotope equilibria at ice surfaces. The dissection of the quantum kinetic energies into orthogonal directions shows that the dominant differences between the two models are to be found in the anharmonic characteristics of the potential energy surfaces along OH bond directions involved in hydrogen bonds.Fil: Videla, Pablo Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Rossky, Peter J.. Rice University; Estados UnidosFil: Laria, Daniel Hector. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Comisión Nacional de Energía Atómica; Argentin
    corecore