310 research outputs found
Simultaneous spectra and radio properties of BL Lac's
We present the results of nine years of the blazar observing programme at the
RATAN-600 radio telescope (2005-2014). The data were obtained at six frequency
bands (1.1, 2.3, 4.8, 7.7, 11.2, 21.7 GHz) for 290 blazars, mostly BL Lacs. In
addition, we used data at 37 GHz obtained quasi-simultaneously with the
Metsahovi radio observatory for some sources. The sample includes blazars of
three types: high-synchrotron peaked (HSP), low-synchrotron peaked (LSP), and
intermediate-synchrotron peaked (ISP). We present several epochs of flux
density measurements, simultaneous radio spectra, spectral indices and
properties of their variability. The analysis of the radio properties of
different classes of blazars showed that LSP and HSP BL Lac blazars are quite
different objects on average. LSPs have higher flux densities, flatter spectra
and their variability increases as higher frequencies are considered. On the
other hand, HSPs are very faint in radio domain, tend to have steep low
frequency spectra, and they are less variable than LSPs at all frequencies.
Another result is spectral flattening above 7.7 GHz detected in HSPs, while an
average LSP spectrum typically remains flat at both the low and high frequency
ranges we considered.Comment: 14 pages, 6 figures. Accepted for publication in Astronomische
Nachrichte
Frequency dependent core shifts and parameter estimation for the blazar 3C 454.3
We study the core shift effect in the parsec scale jet of the blazar 3C 454.3
using the 4.8 GHz - 36.8 GHz radio light curves obtained from three decades of
continuous monitoring. From a piecewise Gaussian fit to each flare, time lags
between the observation frequencies and spectral indices
based on peak amplitudes are determined. From the fit , indicating equipartition between
the magnetic field energy density and the particle energy density. From the fit
, is in the range to . A mean
magnetic field strength at 1 pc, G, and at the core,
mG, are inferred, consistent with previous
estimates. The measure of core position offset is
pc GHz when averaged over all frequency pairs. Based on the
statistical trend shown by the measured core radius as a
function of , we infer that the synchrotron opacity model may not be valid
for all cases. A Fourier periodogram analysis yields power law slopes in the
range to describing the power spectral density shape and gives
bend timescales in the range yr. This result, and both positive
and negative , indicate that the flares originate from multiple shocks
in a small region. Important objectives met in our study include: the
demonstration of the computational efficiency and statistical basis of the
piecewise Gaussian fit; consistency with previously reported results; evidence
for the core shift dependence on observation frequency and its utility in jet
diagnostics in the region close to the resolving limit of very long baseline
interferometry observations.Comment: 12 pages, 11 figures (23 sub-figures), 5 tables. Accepted for
publication in MNRA
Decreased spermatogonial quantity in prepubertal boys with leukaemia treated with alkylating agents
Non peer reviewe
Optical and Radio Variability of BL Lacertae
We observed the prototype blazar, BL Lacertae, extensively in optical and
radio bands during an active phase in the period 2010--2013 when the source
showed several prominent outbursts. We searched for possible correlations and
time lags between the optical and radio band flux variations using
multifrequency data to learn about the mechanisms producing variability. During
an active phase of BL Lacertae, we searched for possible correlations and time
lags between multifrequency light curves of several optical and radio bands. We
tried to estimate any possible variability timescales and inter-band lags in
these bands. We performed optical observations in B, V, R and I bands from
seven telescopes in Bulgaria, Georgia, Greece and India and obtained radio data
at 36.8, 22.2, 14.5, 8 and 4.8 GHz frequencies from three telescopes in
Ukraine, Finland and USA. Significant cross-correlations between optical and
radio bands are found in our observations with a delay of cm-fluxes with
respect to optical ones of ~250 days. The optical and radio light curves do not
show any significant timescales of variability. BL Lacertae showed many optical
'mini-flares' on short time-scales. Variations on longer term timescales are
mildly chromatic with superposition of many strong optical outbursts. In radio
bands, the amplitude of variability is frequency dependent. Flux variations at
higher radio frequencies lead the lower frequencies by days or weeks.
The optical variations are consistent with being dominated by a geometric
scenario where a region of emitting plasma moves along a helical path in a
relativistic jet. The frequency dependence of the variability amplitude
supports an origin of the observed variations intrinsic to the source.Comment: 10 pages, 9 figures, Accepted for publication in A&
A peculiar multi-wavelength flare in the Blazar 3C 454.3
The blazar 3C454.3 exhibited a strong flare seen in gamma-rays, X-rays, and
optical/NIR bands during 3--12 December 2009. Emission in the V and J bands
rose more gradually than did the gamma-rays and soft X-rays, though all peaked
at nearly the same time. Optical polarization measurements showed dramatic
changes during the flare, with a strong anti-correlation between optical flux
and degree of polarization (which rose from ~ 3% to ~ 20%) during the declining
phase of the flare. The flare was accompanied by large rapid swings in
polarization angle of ~ 170 degree. This combination of behaviors appear to be
unique. We have cm-band radio data during the same period but they show no
correlation with variations at higher frequencies. Such peculiar behavior may
be explained using jet models incorporating fully relativistic effects with a
dominant source region moving along a helical path or by a shock-in-jet model
incorporating three-dimensional radiation transfer if there is a dominant
helical magnetic field. We find that spectral energy distributions at different
times during the flare can be fit using modified one-zone models where only the
magnetic field strength and particle break frequencies and normalizations need
change. An optical spectrum taken at nearly the same time provides an estimate
for the central black hole mass of ~ 2.3 * 10^9 M_sun. We also consider two
weaker flares seen during the d span over which multi-band data are
available. In one of them, the V and J bands appear to lead the -ray
and X-ray bands by a few days; in the other, all variations are simultaneous.Comment: 11 pages, 4 figures, 2 tables; MNRAS in pres
Research and innovation as a catalyst for food system transformation
Background: Food systems are associated with severe and persistent problems worldwide. Governance approaches aiming to foster sustainable transformation of food systems face several challenges due to the complex nature of food systems. Scope and approach: In this commentary we argue that addressing these governance challenges requires the development and adoption of novel research and innovation (R&I) approaches that will provide evidence to inform food system transformation and will serve as catalysts for change. We first elaborate on the complexity of food systems (transformation) and stress the need to move beyond traditional linear R&I approaches to be able to respond to persistent problems that affect food systems. Though integrated transdisciplinary approaches are promising, current R&I systems do not sufficiently support such endeavors. As such, we argue, we need strategies that trigger a double transformation - of food systems and of their R&I systems. Key Findings and Conclusions: Seizing the opportunities to transform R&I systems has implications for how research is done - pointing to the need for competence development among researchers, policy makers and society in general - and requires specific governance interventions that stimulate a systemic approach. Such interventions should foster transdisciplinary and transformative research agendas that stimulate portfolios of projects that will reinforce one another, and stimulate innovative experiments to shape conditions for systemic change. In short, a thorough rethinking of the role of R&I as well as how it is funded is a crucial step towards the development of the integrative policies that are necessary to engender systemic change - in the food system and beyond
Research and Innovation Supporting the Farm to Fork Strategy of the European Commission
The EU Think Tank (as part of the FIT4FOOD2030 Coordination andSupport Action) strongly supports the development of the Farm toFork Strategy as a key component of the European Green Deal,recognising the need to transform the food system as a whole
Research and Innovation As a Catalyst For Food System Transformation
Background Food systems are associated with severe and persistent problems worldwide. Governance approaches aiming to foster sustainable transformation of food systems face several challenges due to the complex nature of food systems.
Scope and approach In this commentary we argue that addressing these governance challenges requires the development and adoption of novel research and innovation (R&I) approaches that will provide evidence to inform food system transformation and will serve as catalysts for change. We first elaborate on the complexity of food systems (transformation) and stress the need to move beyond traditional linear R&I approaches to be able to respond to persistent problems that affect food systems. Though integrated transdisciplinary approaches are promising, current R&I systems do not sufficiently support such endeavors. As such, we argue, we need strategies that trigger a double transformation – of food systems and of their R&I systems.
Key Findings and Conclusions Seizing the opportunities to transform R&I systems has implications for how research is done – pointing to the need for competence development among researchers, policy makers and society in general – and requires specific governance interventions that stimulate a systemic approach. Such interventions should foster transdisciplinary and transformative research agendas that stimulate portfolios of projects that will reinforce one another, and stimulate innovative experiments to shape conditions for systemic change. In short, a thorough rethinking of the role of R&I as well as how it is funded is a crucial step towards the development of the integrative policies that are necessary to engender systemic change – in the food system and beyond
- …