1,283 research outputs found

    Nondestructive testing for space shuttle

    Get PDF
    Nondestructive testing techniques for space shuttle applicatio

    On polymorphic logical gates in sub-excitable chemical medium

    Get PDF
    In a sub-excitable light-sensitive Belousov-Zhabotinsky chemical medium an asymmetric disturbance causes the formation of localized traveling wave-fragments. Under the right conditions these wave-fragment can conserve their shape and velocity vectors for extended time periods. The size and life span of a fragment depend on the illumination level of the medium. When two or more wave-fragments collide they annihilate or merge into a new wave-fragment. In computer simulations based on the Oregonator model we demonstrate that the outcomes of inter-fragment collisions can be controlled by varying the illumination level applied to the medium. We interpret these wave-fragments as values of Boolean variables and design collision-based polymorphic logical gates. The gate implements operation XNOR for low illumination, and it acts as NOR gate for high illumination. As a NOR gate is a universal gate then we are able to demonstrate that a simulated light sensitive BZ medium exhibits computational universality

    Accurate masses and radii of normal stars: modern results and applications

    Get PDF
    This paper presents and discusses a critical compilation of accurate, fundamental determinations of stellar masses and radii. We have identified 95 detached binary systems containing 190 stars (94 eclipsing systems, and alpha Centauri) that satisfy our criterion that the mass and radius of both stars be known to 3% or better. To these we add interstellar reddening, effective temperature, metal abundance, rotational velocity and apsidal motion determinations when available, and we compute a number of other physical parameters, notably luminosity and distance. We discuss the use of this information for testing models of stellar evolution. The amount and quality of the data also allow us to analyse the tidal evolution of the systems in considerable depth, testing prescriptions of rotational synchronisation and orbital circularisation in greater detail than possible before. The new data also enable us to derive empirical calibrations of M and R for single (post-) main-sequence stars above 0.6 M(Sun). Simple, polynomial functions of T(eff), log g and [Fe/H] yield M and R with errors of 6% and 3%, respectively. Excellent agreement is found with independent determinations for host stars of transiting extrasolar planets, and good agreement with determinations of M and R from stellar models as constrained by trigonometric parallaxes and spectroscopic values of T(eff) and [Fe/H]. Finally, we list a set of 23 interferometric binaries with masses known to better than 3%, but without fundamental radius determinations (except alpha Aur). We discuss the prospects for improving these and other stellar parameters in the near future.Comment: 56 pages including figures and tables. To appear in The Astronomy and Astrophysics Review. Ascii versions of the tables will appear in the online version of the articl

    Slime mould logic gates based on frequency changes of electrical potential oscillation

    Get PDF
    Physarum polycephalum is a large single amoeba cell, which in its plasmodial phase, forages and connects nearby food sources with protoplasmic tubes. The organism forages for food by growing these tubes towards detected foodstuff, this foraging behaviour is governed by simple rules of photoavoidance and chemotaxis. The electrical activity of the tubes oscillates, creating a peristaltic like action within the tubes, forcing cytoplasm along the lumen; the frequency of this oscillation controls the speed and direction of growth. External stimuli such as light and food cause changes in the oscillation frequency. We demonstrate that using these stimuli as logical inputs we can approximate logic gates using these tubes and derive combinational logic circuits by cascading the gates, with software analysis providing the output of each gate and determining the input of the following gate. Basic gates OR, AND and NOT were correct 90%, 77.8% and 91.7% of the time respectively. Derived logic circuits XOR, half adder and full adder were 70.8%, 65% and 58.8% accurate respectively. Accuracy of the combinational logic decreases as the number of gates is increased, however they are at least as accurate as previous logic approximations using spatial growth of P. polycephalum and up to 30 times as fast at computing the logical output. The results shown here demonstrate a significant advancement in organism-based computing, providing a solid basis for hybrid computers of the future. © 2014 Elsevier Ireland Ltd

    Evolving localizations in reaction-diffusion cellular automata

    Full text link
    We consider hexagonal cellular automata with immediate cell neighbourhood and three cell-states. Every cell calculates its next state depending on the integral representation of states in its neighbourhood, i.e. how many neighbours are in each one state. We employ evolutionary algorithms to breed local transition functions that support mobile localizations (gliders), and characterize sets of the functions selected in terms of quasi-chemical systems. Analysis of the set of functions evolved allows to speculate that mobile localizations are likely to emerge in the quasi-chemical systems with limited diffusion of one reagent, a small number of molecules is required for amplification of travelling localizations, and reactions leading to stationary localizations involve relatively equal amount of quasi-chemical species. Techniques developed can be applied in cascading signals in nature-inspired spatially extended computing devices, and phenomenological studies and classification of non-linear discrete systems.Comment: Accepted for publication in Int. J. Modern Physics

    Mid-Infrared Photometry and Spectra of Three High Mass Protostellar Candidates at IRAS 18151-1208 and IRAS 20343+4129

    Get PDF
    We present arcsecond-scale mid-ir photometry (in the 10.5 micron N band and at 24.8 microns), and low resolution spectra in the N band (R~100) of a candidate high mass protostellar object (HMPO) in IRAS 18151-1208 and of two HMPO candidates in IRAS 20343+4129, IRS 1 and IRS 3. In addition we present high resolution mid-ir spectra (R~80000) of the two HMPO candidates in IRAS 20343+4129. These data are fitted with simple models to estimate the masses of gas and dust associated with the mid-ir emitting clumps, the column densities of overlying absorbing dust and gas, the luminosities of the HMPO candidates, and the likely spectral type of the HMPO candidate for which [Ne II] 12.8 micron emission was detected (IRAS 20343+4129 IRS 3). We suggest that IRAS 18151-1208 is a pre-ultracompact HII region HMPO, IRAS 20343+4129 IRS 1 is an embedded young stellar object with the luminosity of a B3 star, and IRAS 20343+4129 IRS 3 is a B2 ZAMS star that has formed an ultracompact HII region and disrupted its natal envelope.Comment: 40 pages, 8 figures, 3 tables. Accepted for publication in Astrophysical Journal (Part 1

    RC J0311+0507: A Candidate for Superpowerful Radio Galaxies in the Early Universe at Redshift z=4.514

    Full text link
    A strong emission line at 6703A has been detected in the optical spectrum for the host galaxy (R=23.1) of the radio source RC J0311+0507 (4C+04.11). This radio galaxy, with a spectral index of 1.31 in the frequency range 365-4850 MHz, is one of the ultrasteep spectrum objects from the deep survey of a sky strip conducted with RATAN-600 in 1980-1981. We present arguments in favor of the identification of this line with Ly\alpha at redshift z=4.514. In this case, the object belongs to the group of extremely distant radio galaxies of ultrahigh radio luminosity (P_{1400}=1.3 x 10^{29}W Hz^{-1}). Such power can be provided only by a fairly massive black hole (~10^9M_\sun}) that formed in a time less than the age of the Universe at the observed z(1.3 Gyr) or had a primordial origin.Comment: 8 pages, 3 figure

    Woody plant species richness, composition and structure in urban sacred sites, Grahamstown, South Africa

    Get PDF
    Sacred sites are important not only for their traditional, spiritual or religious significance, but may also potentially be valuable for biodiversity conservation in human transformed landscapes. Yet, there has been little consideration of sacred sites in urban areas in this respect. Consequently, to better understand the ecosystem service and conservation value of urban sacred sites, inventories of their floral communities are needed. We examined the richness, composition and structure of the trees and shrubs in 35 urban churchyards and cemeteries in the City of Saints (Grahamstown). The combined area of urban sacred sites (38.7 ha) represented 2.2% of the city area and 13.6% of the public green space area. Species richness of woody plants was high, albeit dominated by non-native species. Levels of similarity among sites were low, indicating the effects of individual management regimens. There was no relationship between age of the site and measured attributes of the vegetation, nor were there any significant differences in vegetation among different religious denominations. However, the basal area and number of woody plants was significantly related to site size. These results indicate the significant heterogeneity of urban sacred sites as green spaces within the urban matrix. The significance of this heterogeneity in providing ecosystem services to users of sacred sites and the broader urban communities requires further investigation
    corecore