253 research outputs found

    Overexpression of Parathyroid Hormone-related Protein in the Pancreatic Islets of Transgenic Mice Causes Islet Hyperplasia, Hyperinsulinemia, and Hypoglycemia

    Get PDF
    Parathyroid hormone-related protein (PTHrP) is produced by the pancreatic islet. It also has receptors on islet cells, suggesting that it may serve a paracrine or autocrine role within the islet. We have developed transgenic mice, which overexpress PTHrP in the islet through the use of the rat insulin II promoter (RIP). Glucose homeostasis in these mice is markedly abnormal; RIP-PTHrP mice are hypoglycemic in the postprandial and fasting states and display inappropriate hyperinsulinemia. At the end of a 24-hour fast, blood glucose values are 49 mg/dl in RIP-PTHrP mice, as compared to 77 mg/dl in normal littermates; insulin concentrations at this time are 6.3 and 3.9 ng/ml, respectively. Islet perifusion studies failed to demonstrate abnormalities in insulin secretion. In contrast, quantitative islet histomorphometry demonstrates that the total islet number and total islet mass are 2-fold higher in RIP-PTHrP mice than in their normal littermates. PTHrP very likely plays a normal physiologic role within the pancreatic islet. This role is most likely paracrine or autocrine. PTHrP appears to regulate insulin secretion either directly or indirectly, through developmental or growth effects on islet mass. PTHrP may have a role as an agent that enhances islet mass and/or enhances insulin secretion

    Bone Microenvironment Specific Roles of ITAM Adapter Signaling during Bone Remodeling Induced by Acute Estrogen-Deficiency

    Get PDF
    Immunoreceptor tyrosine-based activation motif (ITAM) signaling mediated by DAP12 or FcΔ receptor IÎł chain (FcRÎł) have been shown to be critical for osteoclast differentiation and maturation under normal physiological conditions. Their function in pathological conditions is unknown. We studied the role of ITAM signaling during rapid bone remodeling induced by acute estrogen-deficiency in wild-type (WT), DAP12-deficient (DAP12-/-), FcRÎł-deficient (FcRÎł-/-) and double-deficient (DAP12-/-FcRÎł-/-) mice. Six weeks after ovariectomy (OVX), DAP12-/-FcRÎł-/- mice showed resistance to lumbar vertebral body (LVB) trabecular bone loss, while WT, DAP12-/- and FcRÎł-/- mice had significant LVB bone loss. In contrast, all ITAM adapter-deficient mice responded to OVX with bone loss in both femur and tibia of approximately 40%, relative to basal bone volumes. Only WT mice developed significant cortical bone loss after OVX. In vitro studies showed microenvironmental changes induced by OVX are indispensable for enhanced osteoclast formation and function. Cytokine changes, including TGFÎČ and TNFα, were able to induce osteoclastogenesis independent of RANKL in BMMs from WT but not DAP12-/- and DAP12-/-FcRÎł-/- mice. FSH stimulated RANKL-induced osteoclast differentiation from BMMs in WT, but not DAP12-/- and DAP12-/-FcRÎł-/- mice. Our study demonstrates that although ITAM adapter signaling is critical for normal bone remodeling, estrogen-deficiency induces an ITAM adapter-independent bypass mechanism allowing for enhanced osteoclastogenesis and activation in specific bony microenvironments

    Early stroke-related deep venous thrombosis: risk factors and influence on outcome

    Get PDF
    Deep venous thrombosis (DVT) is a serious complication of various medical conditions including acute stroke. Our aim was to identify the occurrence of early stroke-related DVT, risk factors for its development and the influence on outcome. The study involved consecutive patients admitted to our center due to acute ischaemic (n = 278) or haemorrhagic (n = 12) stroke during a 16-month period. We collected data on their pre-stroke health status, neurological deficit on admission and baseline serum CRP and fibrinogen level. Ultrasonographic imaging was performed at the 3rd (IQR: 2–4) and 9th (IQR: 8–9) day after stroke. Patients thrombosis occurring between the first and second examination comprised the newly developed early stroke-related DVT group. We found DVT in 8.0% (24/299) of patients at initial evaluation. Newly developed DVT was present in 3.0% (9/299) of patients, and was predominantly distal (7 of 9 cases). It was associated with elevated serum CRP level (OR 8.75; 95%CI: 1.61–47.6), which was verified in a model adjusted for stroke severity and pre-stroke dependency (3–5 pts. in mRS). In a multivariate model, newly developed DVT significantly increased the risk of 3-month mortality (OR 12.4; 95%CI: 1.72–89.4), without affecting the combined risk of dependency and death (OR 2.57; 95%CI: 0.39–17.0). Early stroke-related DVT is an infrequent complication. However, it may be an independent risk factor for 3-month mortality. Increased serum CRP level combined with normal fibrinogen level seems predictive for development of DVT. It may be reasonable to provide those patients with additional DVT prophylaxis

    Back to the sea twice: identifying candidate plant genes for molecular evolution to marine life

    Get PDF
    Background: Seagrasses are a polyphyletic group of monocotyledonous angiosperms that have adapted to a completely submerged lifestyle in marine waters. Here, we exploit two collections of expressed sequence tags (ESTs) of two wide-spread and ecologically important seagrass species, the Mediterranean seagrass Posidonia oceanica (L.) Delile and the eelgrass Zostera marina L., which have independently evolved from aquatic ancestors. This replicated, yet independent evolutionary history facilitates the identification of traits that may have evolved in parallel and are possible instrumental candidates for adaptation to a marine habitat. Results: In our study, we provide the first quantitative perspective on molecular adaptations in two seagrass species. By constructing orthologous gene clusters shared between two seagrasses (Z. marina and P. oceanica) and eight distantly related terrestrial angiosperm species, 51 genes could be identified with detection of positive selection along the seagrass branches of the phylogenetic tree. Characterization of these positively selected genes using KEGG pathways and the Gene Ontology uncovered that these genes are mostly involved in translation, metabolism, and photosynthesis. Conclusions: These results provide first insights into which seagrass genes have diverged from their terrestrial counterparts via an initial aquatic stage characteristic of the order and to the derived fully-marine stage characteristic of seagrasses. We discuss how adaptive changes in these processes may have contributed to the evolution towards an aquatic and marine existence

    Number preferences in lotteries

    Get PDF
    We explore people's preferences for numbers in large proprietary data sets from two different lottery games. We find that choice is far from uniform, and exhibits some familiar and some new tendencies and biases. Players favor personally meaningful and situationally available numbers, and are attracted towards numbers in the center of the choice form. Frequent players avoid winning numbers from recent draws, whereas infrequent players chase these. Combinations of numbers are formed with an eye for aesthetics, and players tend to spread their numbers relatively evenly across the possible range

    PTHrP Induces Autocrine/Paracrine Proliferation of Bone Tumor Cells through Inhibition of Apoptosis

    Get PDF
    Giant Cell Tumor of Bone (GCT) is an aggressive skeletal tumor characterized by local bone destruction, high recurrence rates and metastatic potential. Previous work in our lab has shown that the neoplastic cell of GCT is a proliferating pre-osteoblastic stromal cell in which the transcription factor Runx2 plays a role in regulating protein expression. One of the proteins expressed by these cells is parathryroid hormone-related protein (PTHrP). The objectives of this study were to determine the role played by PTHrP in GCT of bone with a focus on cell proliferation and apoptosis. Primary stromal cell cultures from 5 patients with GCT of bone and one lung metastsis were used for cell-based experiments. Control cell lines included a renal cell carcinoma (RCC) cell line and a human fetal osteoblast cell line. Cells were exposed to optimized concentrations of a PTHrP neutralizing antibody and were analyzed with the use of cell proliferation and apoptosis assays including mitochondrial dehydrogenase assays, crystal violet assays, APO-1 ELISAs, caspase activity assays, flow cytometry and immunofluorescent immunohistochemistry. Neutralization of PTHrP in the cell environment inhibited cell proliferation in a consistent manner and induced apoptosis in the GCT stromal cells, with the exception of those obtained from a lung metastasis. Cell cycle progression was not significantly affected by PTHrP neutralization. These findings indicate that PTHrP plays an autocrine/paracrine neoplastic role in GCT by allowing the proliferating stromal cells to evade apoptosis, possibly through non-traditional caspase-independent pathways. Thus PTHrP neutralizing immunotherapy is an intriguing potential therapeutic strategy for this tumor
    • 

    corecore