12,207 research outputs found

    Frontostriatal Maturation Predicts Cognitive Control Failure to Appetitive Cues in Adolescents

    Get PDF
    Adolescent risk-taking is a public health issue that increases the odds of poor lifetime outcomes. One factor thought to influence adolescents' propensity for risk-taking is an enhanced sensitivity to appetitive cues, relative to an immature capacity to exert sufficient cognitive control. We tested this hypothesis by characterizing interactions among ventral striatal, dorsal striatal, and prefrontal cortical regions with varying appetitive load using fMRI scanning. Child, teen, and adult participants performed a go/no-go task with appetitive (happy faces) and neutral cues (calm faces). Impulse control to neutral cues showed linear improvement with age, whereas teens showed a nonlinear reduction in impulse control to appetitive cues. This performance decrement in teens was paralleled by enhanced activity in the ventral striatum. Prefrontal cortical recruitment correlated with overall accuracy and showed a linear response with age for no-go versus go trials. Connectivity analyses identified a ventral frontostriatal circuit including the inferior frontal gyrus and dorsal striatum during no-go versus go trials. Examining recruitment developmentally showed that teens had greater between-subject ventral-dorsal striatal coactivation relative to children and adults for happy no-go versus go trials. These findings implicate exaggerated ventral striatal representation of appetitive cues in adolescents relative to an intermediary cognitive control response. Connectivity and coactivity data suggest these systems communicate at the level of the dorsal striatum differentially across development. Biased responding in this system is one possible mechanism underlying heightened risk-taking during adolescence

    Uncertainties of predictions from parton distribution functions II: the Hessian method

    Get PDF
    We develop a general method to quantify the uncertainties of parton distribution functions and their physical predictions, with emphasis on incorporating all relevant experimental constraints. The method uses the Hessian formalism to study an effective chi-squared function that quantifies the fit between theory and experiment. Key ingredients are a recently developed iterative procedure to calculate the Hessian matrix in the difficult global analysis environment, and the use of parameters defined as components along appropriately normalized eigenvectors. The result is a set of 2d Eigenvector Basis parton distributions (where d=16 is the number of parton parameters) from which the uncertainty on any physical quantity due to the uncertainty in parton distributions can be calculated. We illustrate the method by applying it to calculate uncertainties of gluon and quark distribution functions, W boson rapidity distributions, and the correlation between W and Z production cross sections.Comment: 30 pages, Latex. Reference added. Normalization of Hessian matrix changed to HEP standar

    Camera traps at northern river otter latrines enhance carnivore detectability along riparian areas in eastern North America

    Get PDF
    AbstractWe evaluated the efficacy of placing camera traps at river otter (Lontra canadensis) latrines (discrete sites in riparian areas where otters regularly deposit scats, urine, and anal secretions) to detect other carnivores occupying Great Swamp National Wildlife Refuge, New Jersey, USA. We postulated that scents at latrines may serve as an attractant to other carnivores and evaluated this premise by using camera traps to compare carnivore detection rates (overall and by species) and richness (overall and for each survey month) between latrine (n=5) and non-latrine riparian areas (n=5). On average carnivore richness was about 1.7 times higher than that of a non-latrine, and mean richness was higher at latrines for all survey months. Likewise, the overall carnivore detection frequency was 3.5 times greater at latrines, and the detection frequencies for red foxes (Vulpes vulpes), northern raccoons (Procyon lotor), river otters, mink (Neovison vison), long-tailed weasels (Mustela frenata), and Virginia opossums (Didelphis virginiana) were greater at latrines. American black bears (Ursus americanus) and eastern coyotes (Canis latrans) where detected more frequently at non-latrines. Our study provides evidence that placement of camera traps at otter latrines may serve as a new and novel approach for monitoring carnivore populations in riparian areas

    Bicycle Infrastructure and Traffic Congestion: Evidence from DC\u27s Capital Bikeshare

    Get PDF
    This study explores the impact of bicycle-sharing infrastructure on urban transportation. We estimate a causal effect of the Capital Bikeshare on traffic congestion in the metropolitan Washington, D.C., area. We exploit a unique traffic dataset that is finely defined on a spatial and temporal scale. Our approach examines within-city commuting decisions as opposed to traffic patterns on major thruways. Empirical results suggest that the availability of a bikeshare reduces traffic congestion upwards of 4% within a neighborhood. In addition, we estimate heterogeneous treatment effects using panel quantile regression. Results indicate that the congestion-reducing impact of bikeshares is concentrated in highly congested areas

    Supraspinal nocifensive responses of cats: Spinal cord pathways, monoamines, and modulation

    Full text link
    These experiments were conducted to determine (1) whether dorsal and ventral ascending spinal pathways can each mediate unlearned supraspinal nocifensive responses of cats to noxious thermal stimuli and (2) whether interrupting the spinal projection of supraspinal monoaminergic neurons alters the excitability and natural modulation of these responses. In partially restrained cats, thermal pulses (≄ 47°C) delivered to the hindlimbs of intact cats or rostral to lesions of the thoracic spinal cord elicited abrupt body movements and interruption of eating (or of exploring for) liquified food. These electronically monitored responses automatically terminated the stimulus. Natural modulation of responsiveness was produced by delivering food and thermal stimuli simultaneously; this reduced response probability by an average of 41%. Complete transection of the thoracic spinal cord eliminated both thermally elicited responses, and orienting responses to noxious and tactile mechanical stimulation of the hindlimbs. Ventral bilateral thoracic spinal cord lesions that spared only the dorsal funiculus and portions of the dorsolateral funiculus (three cats) significantly reduced orienting responses to all mechanical hindlimb stimuli and reduced, but did not eliminate, movement and interrupt responses to noxious thermal hindlimb stimuli. Response latency was unaffected. Food-induced response supression persisted although lumbar spinal cord concentrations of serotonin (5HT) and norepinephrine (NE) were markedly reduced. A bilateral lesion of the dorsal funiculi and dorsal portions of the dorsolateral funiculi (one cat) also reduced nocifensive responsiveness, but only the NE concentration in lumbar spinal cord was reduced significantly relative to a matched cervical sample. In contrast, deep bilateral lesions of the dorsolateral funiculi (two cats) produced an increase in the probability of movement and interrupt responses without affecting either response latency or food-induced response supression. Lumbar spinal cord concentrations of NE and, in one cat, 5HT were reduced. We conclude that (1) the dorsal and ventral spinal funiculi are each sufficient to initiate and necessary to maintain normal supraspinally organized nocifensive behavior in the cat; (2) descending monoaminergic pathways are not necessary for the phasic modulation of these responses; and (3) the tonic excitability, but not the phasic modulation, of these responses is determined in part by fibers in the dorsolateral funiculus.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/50039/1/902700412_ftp.pd

    Risk Factors for Long-Term Coronary Artery Calcium Progression in the Multi-Ethnic Study of Atherosclerosis.

    Get PDF
    BackgroundCoronary artery calcium (CAC) detected by noncontrast cardiac computed tomography scanning is a measure of coronary atherosclerosis burden. Increasing CAC levels have been strongly associated with increased coronary events. Prior studies of cardiovascular disease risk factors and CAC progression have been limited by short follow-up or restricted to patients with advanced disease.Methods and resultsWe examined cardiovascular disease risk factors and CAC progression in a prospective multiethnic cohort study. CAC was measured 1 to 4 times (mean 2.5 scans) over 10 years in 6810 adults without preexisting cardiovascular disease. Mean CAC progression was 23.9 Agatston units/year. An innovative application of mixed-effects models investigated associations between cardiovascular disease risk factors and CAC progression. This approach adjusted for time-varying factors, was flexible with respect to follow-up time and number of observations per participant, and allowed simultaneous control of factors associated with both baseline CAC and CAC progression. Models included age, sex, study site, scanner type, and race/ethnicity. Associations were observed between CAC progression and age (14.2 Agatston units/year per 10 years [95% CI 13.0 to 15.5]), male sex (17.8 Agatston units/year [95% CI 15.3 to 20.3]), hypertension (13.8 Agatston units/year [95% CI 11.2 to 16.5]), diabetes (31.3 Agatston units/year [95% CI 27.4 to 35.3]), and other factors.ConclusionsCAC progression analyzed over 10 years of follow-up, with a novel analytical approach, demonstrated strong relationships with risk factors for incident cardiovascular events. Longitudinal CAC progression analyzed in this framework can be used to evaluate novel cardiovascular risk factors

    Quantifying black carbon deposition over the Greenland ice sheet from forest fires in Canada

    Get PDF
    Black carbon (BC) concentrations observed in 22 snowpits sampled in the northwest sector of the Greenland ice sheet in April 2014 have allowed us to identify a strong and widespread BC aerosol deposition event, which was dated to have accumulated in the pits from two snow storms between 27 July and 2 August 2013. This event comprises a significant portion (57% on average across all pits) of total BC deposition over 10 months (July 2013 to April 2014). Here we link this deposition event to forest fires burning in Canada during summer 2013 using modeling and remote sensing tools. Aerosols were detected by both the Cloud‐Aerosol Lidar with Orthogonal Polarization (on board CALIPSO) and Moderate Resolution Imaging Spectroradiometer (Aqua) instruments during transport between Canada and Greenland. We use high‐resolution regional chemical transport modeling (WRF‐Chem) combined with high‐resolution fire emissions (FINNv1.5) to study aerosol emissions, transport, and deposition during this event. The model captures the timing of the BC deposition event and shows that fires in Canada were the main source of deposited BC. However, the model underpredicts BC deposition compared to measurements at all sites by a factor of 2–100. Underprediction of modeled BC deposition originates from uncertainties in fire emissions and model treatment of wet removal of aerosols. Improvements in model descriptions of precipitation scavenging and emissions from wildfires are needed to correctly predict deposition, which is critical for determining the climate impacts of aerosols that originate from fires
    • 

    corecore