5,967 research outputs found

    Assessment of Southern California environment from ERTS-1

    Get PDF
    ERTS-1 imagery is a useful source of data for evaluation of earth resources in Southern California. The improving quality of ERTS-1 imagery, and our increasing ability to enhance the imagery has resulted in studies of a variety of phenomena in several Southern California environments. These investigations have produced several significant results of varying detail. They include the detection and identification of macro-scale tectonic and vegetational patterns, as well as detailed analysis of urban and agricultural processes. The sequential nature of ERTS-1 imagery has allowed these studies to monitor significant changes in the environment. In addiation, some preliminary work has begun directed toward assessing the impact of expanding recreation, agriculture and urbanization into the fragile desert environment. Refinement of enhancement and mapping techniques and more intensive analysis of ERTS-1 imagery should lead to a greater capability to extract detailed information for more precise evaluations and more accurate monitoring of earth resources in Southern California

    Land use in the northern Coachella Valley

    Get PDF
    Satellite imagery has proved to have great utility for monitoring land use change and as a data source for regional planning. In California, open space desert resources are under severe pressure to serve as a source for recreational gratification to individuals living in the heavily populated southern coastal plain. Concern for these sensitive arid environments has been expressed by both federal and state agencies. The northern half of the Coachella Valley has historically served as a focal point for weekend recreational activity and second homes. Since demand in this area has remained high, land use change from rural to urban residential has been occurring continuously since 1968. This area of rapid change is an ideal site to illustrate the utility of satellite imagery as a data source for planning information, and has served as the areal focus of this investigation

    Quiet Clean Short-haul Experimental Engine (QCSEE). Composite fan frame subsystem test report

    Get PDF
    The element and subcomponent testing conducted to verify the composite fan frame design of two experimental high bypass geared turbofan engines and propulsion systems for short haul passenger aircraft is described. Emphasis is placed on the propulsion technology required for future externally blown flap aircraft with engines located both under the wing and over the wing, including technology in composite structures and digital engine controls. The element tests confirmed that the processes used in the frame design would produce the predicted mechanical properties. The subcomponent tests verified that the detail structural components of the frame had adequate structural integrity

    Theory of adhesion: role of surface roughness

    Full text link
    We discuss how surface roughness influence the adhesion between elastic solids. We introduce a Tabor number which depends on the length scale or magnification, and which gives information about the nature of the adhesion at different length scales. We consider two limiting cases relevant for (a) elastically hard solids with weak adhesive interaction (DMT-limit) and (b) elastically soft solids or strong adhesive interaction (JKR-limit). For the former cases we study the nature of the adhesion using different adhesive force laws (F∼u−nF\sim u^{-n}, n=1.5−4n=1.5-4, where uu is the wall-wall separation). In general, adhesion may switch from DMT-like at short length scales to JKR-like at large (macroscopic) length scale. We compare the theory predictions to the results of exact numerical simulations and find good agreement between theory and the simulation results

    Application of remote sensing to selected problems within the state of California

    Get PDF
    There are no author-identified signficant results in this report

    Application of remote sensing to selected problems within the state of California

    Get PDF
    There are no author-identified significant results in this report

    Design and interpretation of cell trajectory assays

    Get PDF
    Cell trajectory data are often reported in the experimental cell biology literature to distinguish between different types of cell migration. Unfortunately, there is no accepted protocol for designing or interpreting such experiments and this makes it difficult to quantitatively compare different published datasets and to understand how changes in experimental design influence our ability to interpret different experiments. Here, we use an individual-based mathematical model to simulate the key features of a cell trajectory experiment. This shows that our ability to correctly interpret trajectory data is extremely sensitive to the geometry and timing of the experiment, the degree of motility bias and the number of experimental replicates. We show that cell trajectory experiments produce data that are most reliable when the experiment is performed in a quasi-one-dimensional geometry with a large number of identically prepared experiments conducted over a relatively short time-interval rather than a few trajectories recorded over particularly long time-intervals

    Frictional sliding without geometrical reflection symmetry

    Get PDF
    The dynamics of frictional interfaces play an important role in many physical systems spanning a broad range of scales. It is well-known that frictional interfaces separating two dissimilar materials couple interfacial slip and normal stress variations, a coupling that has major implications on their stability, failure mechanism and rupture directionality. In contrast, interfaces separating identical materials are traditionally assumed not to feature such a coupling due to symmetry considerations. We show, combining theory and experiments, that interfaces which separate bodies made of macroscopically identical materials, but lack geometrical reflection symmetry, generically feature such a coupling. We discuss two applications of this novel feature. First, we show that it accounts for a distinct, and previously unexplained, experimentally observed weakening effect in frictional cracks. Second, we demonstrate that it can destabilize frictional sliding which is otherwise stable. The emerging framework is expected to find applications in a broad range of systems.Comment: 14 pages, 5 figures + Supplementary Material. Minor change in the title, extended analysis in the second par
    • …
    corecore