60 research outputs found

    Information and Discriminability as Measures of Reliability of Sensory Coding

    Get PDF
    Response variability is a fundamental issue in neural coding because it limits all information processing. The reliability of neuronal coding is quantified by various approaches in different studies. In most cases it is largely unclear to what extent the conclusions depend on the applied reliability measure, making a comparison across studies almost impossible. We demonstrate that different reliability measures can lead to very different conclusions even if applied to the same set of data: in particular, we applied information theoretical measures (Shannon information capacity and Kullback-Leibler divergence) as well as a discrimination measure derived from signal-detection theory to the responses of blowfly photoreceptors which represent a well established model system for sensory information processing. We stimulated the photoreceptors with white noise modulated light intensity fluctuations of different contrasts. Surprisingly, the signal-detection approach leads to a safe discrimination of the photoreceptor response even when the response signal-to-noise ratio (SNR) is well below unity whereas Shannon information capacity and also Kullback-Leibler divergence indicate a very low performance. Applying different measures, can, therefore, lead to very different interpretations concerning the system's coding performance. As a consequence of the lower sensitivity compared to the signal-detection approach, the information theoretical measures overestimate internal noise sources and underestimate the importance of photon shot noise. We stress that none of the used measures and, most likely no other measure alone, allows for an unbiased estimation of a neuron's coding properties. Therefore the applied measure needs to be selected with respect to the scientific question and the analyzed neuron's functional context

    Testing non-uniform k-wise independent distributions over product spaces (extended abstract)

    Get PDF
    A distribution D over Σ1× ⋯ ×Σ n is called (non-uniform) k-wise independent if for any set of k indices {i 1, ..., i k } and for any z1zki1ik, PrXD[Xi1Xik=z1zk]=PrXD[Xi1=z1]PrXD[Xik=zk]. We study the problem of testing (non-uniform) k-wise independent distributions over product spaces. For the uniform case we show an upper bound on the distance between a distribution D from the set of k-wise independent distributions in terms of the sum of Fourier coefficients of D at vectors of weight at most k. Such a bound was previously known only for the binary field. For the non-uniform case, we give a new characterization of distributions being k-wise independent and further show that such a characterization is robust. These greatly generalize the results of Alon et al. [1] on uniform k-wise independence over the binary field to non-uniform k-wise independence over product spaces. Our results yield natural testing algorithms for k-wise independence with time and sample complexity sublinear in terms of the support size when k is a constant. The main technical tools employed include discrete Fourier transforms and the theory of linear systems of congruences.National Science Foundation (U.S.) (NSF grant 0514771)National Science Foundation (U.S.) (grant 0728645)National Science Foundation (U.S.) (Grant 0732334)Marie Curie International Reintegration Grants (Grant PIRG03-GA-2008-231077)Israel Science Foundation (Grant 1147/09)Israel Science Foundation (Grant 1675/09)Massachusetts Institute of Technology (Akamai Presidential Fellowship

    Distributed Dendritic Processing Facilitates Object Detection: A Computational Analysis on the Visual System of the Fly

    Get PDF
    Hennig P, Möller R, Egelhaaf M. Distributed Dendritic Processing Facilitates Object Detection: A Computational Analysis on the Visual System of the Fly. PLoS ONE. 2008;3(8): e3092.Background: Detecting objects is an important task when moving through a natural environment. Flies, for example, may land on salient objects or may avoid collisions with them. The neuronal ensemble of Figure Detection cells (FD-cells) in the visual system of the fly is likely to be involved in controlling these behaviours, as these cells are more sensitive to objects than to extended background structures. Until now the computations in the presynaptic neuronal network of FD-cells and, in particular, the functional significance of the experimentally established distributed dendritic processing of excitatory and inhibitory inputs is not understood. Methodology/Principal Findings: We use model simulations to analyse the neuronal computations responsible for the preference of FD-cells for small objects. We employed a new modelling approach which allowed us to account for the spatial spread of electrical signals in the dendrites while avoiding detailed compartmental modelling. The models are based on available physiological and anatomical data. Three models were tested each implementing an inhibitory neural circuit, but differing by the spatial arrangement of the inhibitory interaction. Parameter optimisation with an evolutionary algorithm revealed that only distributed dendritic processing satisfies the constraints arising from electrophysiological experiments. In contrast to a direct dendro-dendritic inhibition of the FD-cell (Direct Distributed Inhibition model), an inhibition of its presynaptic retinotopic elements (Indirect Distributed Inhibition model) requires smaller changes in input resistance in the inhibited neurons during visual stimulation. Conclusions/Significance: Distributed dendritic inhibition of retinotopic elements as implemented in our Indirect Distributed Inhibition model is the most plausible wiring scheme for the neuronal circuit of FD-cells. This microcircuit is computationally similar to lateral inhibition between the retinotopic elements. Hence, distributed inhibition might be an alternative explanation of perceptual phenomena currently explained by lateral inhibition networks

    Removing bleaching artifacts from voltage sensitive dye recordings with ICA

    Get PDF

    Roles for Coincidence Detection in Coding Amplitude-Modulated Sounds.

    No full text
    Many sensory neurons encode temporal information by detecting coincident arrivals of synaptic inputs. In the mammalian auditory brainstem, binaural neurons of the medial superior olive (MSO) are known to act as coincidence detectors, whereas in the lateral superior olive (LSO) roles of coincidence detection have remained unclear. LSO neurons receive excitatory and inhibitory inputs driven by ipsilateral and contralateral acoustic stimuli, respectively, and vary their output spike rates according to interaural level differences. In addition, LSO neurons are also sensitive to binaural phase differences of low-frequency tones and envelopes of amplitude-modulated (AM) sounds. Previous physiological recordings in vivo found considerable variations in monaural AM-tuning across neurons. To investigate the underlying mechanisms of the observed temporal tuning properties of LSO and their sources of variability, we used a simple coincidence counting model and examined how specific parameters of coincidence detection affect monaural and binaural AM coding. Spike rates and phase-locking of evoked excitatory and spontaneous inhibitory inputs had only minor effects on LSO output to monaural AM inputs. In contrast, the coincidence threshold of the model neuron affected both the overall spike rates and the half-peak positions of the AM-tuning curve, whereas the width of the coincidence window merely influenced the output spike rates. The duration of the refractory period affected only the low-frequency portion of the monaural AM-tuning curve. Unlike monaural AM coding, temporal factors, such as the coincidence window and the effective duration of inhibition, played a major role in determining the trough positions of simulated binaural phase-response curves. In addition, empirically-observed level-dependence of binaural phase-coding was reproduced in the framework of our minimalistic coincidence counting model. These modeling results suggest that coincidence detection of excitatory and inhibitory synaptic inputs is essential for LSO neurons to encode both monaural and binaural AM sounds

    Physiological models of the lateral superior olive.

    No full text
    In computational biology, modeling is a fundamental tool for formulating, analyzing and predicting complex phenomena. Most neuron models, however, are designed to reproduce certain small sets of empirical data. Hence their outcome is usually not compatible or comparable with other models or datasets, making it unclear how widely applicable such models are. In this study, we investigate these aspects of modeling, namely credibility and generalizability, with a specific focus on auditory neurons involved in the localization of sound sources. The primary cues for binaural sound localization are comprised of interaural time and level differences (ITD/ILD), which are the timing and intensity differences of the sound waves arriving at the two ears. The lateral superior olive (LSO) in the auditory brainstem is one of the locations where such acoustic information is first computed. An LSO neuron receives temporally structured excitatory and inhibitory synaptic inputs that are driven by ipsi- and contralateral sound stimuli, respectively, and changes its spike rate according to binaural acoustic differences. Here we examine seven contemporary models of LSO neurons with different levels of biophysical complexity, from predominantly functional ones ('shot-noise' models) to those with more detailed physiological components (variations of integrate-and-fire and Hodgkin-Huxley-type). These models, calibrated to reproduce known monaural and binaural characteristics of LSO, generate largely similar results to each other in simulating ITD and ILD coding. Our comparisons of physiological detail, computational efficiency, predictive performances, and further expandability of the models demonstrate (1) that the simplistic, functional LSO models are suitable for applications where low computational costs and mathematical transparency are needed, (2) that more complex models with detailed membrane potential dynamics are necessary for simulation studies where sub-neuronal nonlinear processes play important roles, and (3) that, for general purposes, intermediate models might be a reasonable compromise between simplicity and biological plausibility

    On the reliability of visual information processing in the fly motion pathway

    No full text
    Warzecha A-K, Kretzberg J, Horstmann W, Egelhaaf M. On the reliability of visual information processing in the fly motion pathway. Zoology. 2000;103(Supplement 3):76
    • …
    corecore