74 research outputs found
The 18 May 2024 Iberian superbolide from a sunskirting orbit: USG space sensors and ground-based independent observations
On 18 May 2024, a superbolide traversed the western part of the Iberian Peninsula, culminating its flight over the Atlantic Ocean and generating significant media attention. This event was caused by a weak carbonaceous meteoroid of 1 m, entering the atmosphere at 40.4 km/s with an average slope of 8.5â o. The luminous phase started at 133 km and ended at an altitude of 54 km. The meteoroidâs heliocentric orbit had an inclination of 16.4oâ , a high eccentricity of 0.952, a semimajor axis of 2.4 au, and a short perihelion distance of 0.12 au. The superbolide was recorded by multiple ground-based stations of the Spanish Fireball and Meteorite Network and the European Space Agency, as well as by the U.S. Government sensors from space. Due to the absence of observable deceleration, we successfully reconciled satellite radiometric data with a purely dynamic atmospheric flight model, constraining the meteoroidâs mass and coherently fitting its velocity profile. Our analysis shows a good agreement with the radiant and velocity data reported by the Center for Near-Earth Object Studies, with a deviation of 0.56o and 0.1 km/sâ , respectively. The presence of detached fragments in the lower part of the luminous trajectory suggests that the meteoroid was a polymict carbonaceous chondrite, containing higher-strength macroscopic particles in its interior due to collisional gardening, or a thermally processed C-type asteroid. The orbital elements indicate that the most likely source is the Jupiter-Family Comet region, aligning with the Solar and Heliospheric Observatory comet family, as its sunskirting orbit is decoupled from Jupiter. This event provides important information to characterize the disruption mechanism of near-Sun objects
Longitudinal Analysis of Quality of Life, Clinical, Radiographic, Echocardiographic, and Laboratory Variables in Dogs with Preclinical Myxomatous Mitral Valve Disease Receiving Pimobendan or Placebo: The EPIC Study
Background: Changes in clinical variables associated with the administration of pimobendan to dogs with preclinical myxomatous mitral valve disease (MMVD) and cardiomegaly have not been described.
Objectives: To investigate the effect of pimobendan on clinical variables and the relationship between a change in heart size and the time to congestive heart failure (CHF) or cardiac-related death (CRD) in dogs with MMVD and cardiomegaly. To determine whether pimobendan-treated dogs differ from dogs receiving placebo at onset of CHF.
Animals: Three hundred and fifty-four dogs with MMVD and cardiomegaly.
Materials and Methods: Prospective, blinded study with dogs randomized (ratio 1:1) to pimobendan (0.4-0.6 mg/kg/d) or placebo. Clinical, laboratory, and heart-size variables in both groups were measured and compared at different time points (day 35 and onset of CHF) and over the study duration. Relationships between short-term changes in echocardiographic variables and time to CHF or CRD were explored.
Results: At day 35, heart size had reduced in the pimobendan group:median change in (Delta) LVIDDN -0.06 (IQR:-0.15 to + 0.02), P < 0.0001, and LA:Ao -0.08 (IQR:-0.23 to + 0.03), P < 0.0001. Reduction in heart size was associated with increased time to CHF or CRD. Hazard ratio for a 0.1 increase in Delta LVIDDN was 1.26, P = 0.0003. Hazard ratio for a 0.1 increase in Delta LA:Ao was 1.14, P = 0.0002. At onset of CHF, groups were similar.
Conclusions and Clinical Importance: Pimobendan treatment reduces heart size. Reduced heart size is associated with improved outcome. At the onset of CHF, dogs treated with pimobendan were indistinguishable from those receiving placebo
Effect of Pimobendan in Dogs with Preclinical Myxomatous Mitral Valve Disease and Cardiomegaly: The EPIC Study - A Randomized Clinical Trial
Background: Pimobendan is effective in treatment of dogs with congestive heart failure (CHF) secondary to myxomatous mitral valve disease (MMVD). Its effect on dogs before the onset of CHF is unknown. Hypothesis/Objectives: Administration of pimobendan (0.4-0.6 mg/kg/d in divided doses) to dogs with increased heart size secondary to preclinical MMVD, not receiving other cardiovascular medications, will delay the onset of signs of CHF, cardiac-related death, or euthanasia. Animals: 360 client-owned dogs with MMVD with left atrial-to-aortic ratio >= 1.6, normalized left ventricular internal diameter in diastole >= 1.7, and vertebral heart sum >10.5. Methods: Prospective, randomized, placebo-controlled, blinded, multicenter clinical trial. Primary outcome variable was time to a composite of the onset of CHF, cardiac-related death, or euthanasia. Results: Median time to primary endpoint was 1228 days (95% CI: 856-NA) in the pimobendan group and 766 days (95% CI: 667-875) in the placebo group (P = .0038). Hazard ratio for the pimobendan group was 0.64 (95% CI: 0.47-0.87) compared with the placebo group. The benefit persisted after adjustment for other variables. Adverse events were not different between treatment groups. Dogs in the pimobendan group lived longer (median survival time was 1059 days (95% CI: 952-NA) in the pimobendan group and 902 days (95% CI: 747-1061) in the placebo group) (P = .012). Conclusions and Clinical Importance: Administration of pimobendan to dogs with MMVD and echocardiographic and radiographic evidence of cardiomegaly results in prolongation of preclinical period and is safe and well tolerated. Prolongation of preclinical period by approximately 15 months represents substantial clinical benefit
Understanding the impact of antibiotic therapies on the respiratory tract resistome: A novel pooled-template metagenomic sequencing strategy
Determining the effects of antimicrobial therapies on airway microbiology at a population-level is essential. Such analysis allows, for example, surveillance of antibiotic-induced changes in pathogen prevalence, the emergence and spread of antibiotic resistance, and the transmission of multi-resistant organisms. However, current analytical strategies for understanding these processes are limited. Culture- and PCR-based assays for specific microbes require the a priori selection of targets, while antibiotic sensitivity testing typically provides no insight into either the molecular basis of resistance, or the carriage of resistance determinants by the wider commensal microbiota. Shotgun metagenomic sequencing provides an alternative approach that allows the microbial composition of clinical samples to be described in detail, including the prevalence of resistance genes and virulence traits. While highly informative, the application of metagenomics to large patient cohorts can be prohibitively expensive. Using sputum samples from a randomised placebo-controlled trial of erythromycin in adults with bronchiectasis, we describe a novel, cost-effective strategy for screening patient cohorts for changes in resistance gene prevalence. By combining metagenomic screening of pooled DNA extracts with validatory quantitative PCR-based analysis of candidate markers in individual samples, we identify population-level changes in the relative abundance of specific macrolide resistance genes. This approach has the potential to provide an important adjunct to current analytical strategies, particularly within the context of antimicrobial clinical trials
The phylogenetic landscape and nosocomial spread of the multidrug-resistant opportunist Stenotrophomonas maltophilia
Recent studies portend a rising global spread and adaptation of human- or healthcare-associated pathogens. Here, we analyse an international collection of the emerging, multidrug-resistant, opportunistic pathogen Stenotrophomonas maltophilia from 22 countries to infer population structure and clonality at a global level. We show that the S. maltophilia complex is divided into 23 monophyletic lineages, most of which harbour strains of all degrees of human virulence. Lineage Sm6 comprises the highest rate of human-associated strains, linked to key virulence and resistance genes. Transmission analysis identifies potential outbreak events of genetically closely related strains isolated within days or weeks in the same hospitals
Treatment of complicated skin and soft-tissue infections caused by resistant bacteria: value of linezolid, tigecycline, daptomycin and vancomycin
Antibiotic-resistant organisms causing both hospital-and community-acquired complicated skin and soft-tissue infections (cSSTI) are increasingly reported. A substantial medical and economical burden associated with MRSA colonisation or infection has been documented. The number of currently available appropriate antimicrobial agents is limited. Good quality randomised, controlled clinical trial data on antibiotic efficacy and safety is available for cSSTI caused by MRSA. Linezolid, tigecycline, daptomycin and vancomycin showed efficacy and safety in MRSA-caused cSSTI. None of these drugs showed significant superiority in terms of clinical cure and eradication rates. To date, linezolid offers by far the greatest number of patients included in controlled trials with a strong tendency of superiority over vancomycin in terms of eradication and clinical success
- âŠ