313 research outputs found

    Differentation of the fat body cells in the precocius adults of Schistocerca gregaria: regulation of polyploidy by juvenile hormone

    Full text link
    Precocious adults from 2nd and 3rd instar larvae of the desert locust Schistocerca gregaria were used to assess the competence of their fat body to synthesize DNA in response to a juvenile hormone analog (JHA), hydoprene. Autoradiographic studies show that JHA stimulates DNA synthesis since a significant proportion of the fat body nuclei are labelled after treatment with 100 or 200 µg of JHA. Maximum DNA synthesis occurs 24 h after treatment with 100 µg of JHA. The nuclear ploidy classes of the precocious adults from 3rd larvae are similar to those of 1-d-old normal adults, but treatemnt of these precociuos adults with µg of JHA doubles the DNA content resulting in enhanced ploidy classes which resemble those of 10-d-old normal females. In the precocious adults that emerged from 2nd instar larvae the ploidy classes are higher than those of 1-d-old normal adults, and treatment of these precocious adults with JHA results in a further increase in the DNA content of the fat body nuclei leading to the formation of high percentages of 16C and 32C nuclei. The results of these studies suggest that any model on the mode of action of JH should recognize this phenomenon of JH-induced polyploidization in the fat body nuclei

    Inflammation and premature aging in advanced chronic kidney disease

    Get PDF
    Systemic inflammation in end-stage renal disease (ESRD) is an established risk factor for mortality and a catalyst for other complications which are related to a premature aging phenotype, including muscle wasting, vascular calcification and other forms of premature vascular disease, depression, osteoporosis and frailty. Uremic inflammation is also mechanistically related to mechanisms involved in the aging process, such as telomere shortening, mitochondrial dysfunction, and altered nutrient sensing, which can have direct effect on cellular and tissue function. In addition to uremia-specific causes such as abnormalities in the phosphate- Klotho axis, there are remarkable similarities between the pathophysiology of uremic inflammation and so-called "inflammaging" in the general population. Potentially relevant, but still somewhat unexplored in this respect are abnormal or misplaced protein structures as well as abnormalities in tissue homeostasis, which evoke danger signals through damage associated molecular patters (DAMPS) as well as the senescence associated secretory phenotype (SASP). Systemic inflammation, in combination with the loss of kidney function, can impair the resilience of the body to external and internal stressors by reduced functional and structural tissue reserve, and by impairing normal organ crosstalk, thus providing an explanation for the greatly increased risk of homeostatic breakdown in this population. In this review, the relation between uremic inflammation and a premature aging phenotype, as well as potential causes and consequences are discussed

    Estimation of Muscle Mass in the Integrated Assessment of Patients on Hemodialysis

    Get PDF
    Assessment of muscle mass (MM) or its proxies, lean tissue mass (LTM) or fat-free mass (FFM), is an integral part of the diagnosis of protein-energy wasting (PEW) and sarcopenia in patients on hemodialysis (HD). Both sarcopenia and PEW are related to a loss of functionality and also increased morbidity and mortality in this patient population. However, loss of MM is a part of a wider spectrum, including inflammation and fluid overload. As both sarcopenia and PEW are amendable to treatment, estimation of MM regularly is therefore of major clinical relevance. Whereas, computer-assisted tomography (CT) or dual-energy X-ray absorptiometry (DXA) is considered a reference method, it is unsuitable as a method for routine clinical monitoring. In this review, different bedside methods to estimate MM or its proxies in patients on HD will be discussed, with emphasis on biochemical methods, simplified creatinine index (SCI), bioimpedance spectroscopy (BIS), and muscle ultrasound (US). Body composition parameters of all methods are related to the outcome and appear relevant in clinical practice. The US is the only parameter by which muscle dimensions are measured. BIS and SCI are also dependent on either theoretical assumptions or the use of population-specific regression equations. Potential caveats of the methods are that SCI can be influenced by residual renal function, BIS can be influenced by fluid overload, although the latter may be circumvented by the use of a three-compartment model, and that muscle US reflects regional and not whole body MM. In conclusion, both SCI and BIS as well as muscle US are all valuable methods that can be applied for bedside nutritional assessment in patients on HD and appear suitable for routine follow-up. The choice for either method depends on local preferences. However, estimation of MM or its proxies should always be part of a multidimensional assessment of the patient followed by a personalized treatment strategy

    Temporal Recurrent Networks for Online Action Detection

    Full text link
    Most work on temporal action detection is formulated as an offline problem, in which the start and end times of actions are determined after the entire video is fully observed. However, important real-time applications including surveillance and driver assistance systems require identifying actions as soon as each video frame arrives, based only on current and historical observations. In this paper, we propose a novel framework, Temporal Recurrent Network (TRN), to model greater temporal context of a video frame by simultaneously performing online action detection and anticipation of the immediate future. At each moment in time, our approach makes use of both accumulated historical evidence and predicted future information to better recognize the action that is currently occurring, and integrates both of these into a unified end-to-end architecture. We evaluate our approach on two popular online action detection datasets, HDD and TVSeries, as well as another widely used dataset, THUMOS'14. The results show that TRN significantly outperforms the state-of-the-art

    Intradialytic protein ingestion and exercise do not compromise uremic toxin removal throughout hemodialysis

    Get PDF
    Objective Dietary protein and physical activity interventions are increasingly implemented during hemodialysis to support muscle maintenance in patients with end-stage renal disease (ESRD). Although muscle maintenance is important, adequate removal of uremic toxins throughout hemodialysis is the primary concern for patients. It remains to be established whether intradialytic protein ingestion and/or exercise modulate uremic toxin removal during hemodialysis. Methods We recruited 10 patients with ESRD (age: 65 ± 16 y, BMI: 24.2 ± 4.8 kg/m2) on chronic hemodialysis treatment to participate in this randomized cross-over trial. During hemodialysis, patients were assigned to ingest 40 g protein or a nonprotein placebo both at rest (protein [PRO] and placebo [PLA], respectively) and following 30 min of exercise (PRO + exercise [EX] and PLA + EX, respectively). Blood and spent dialysate samples were collected throughout hemodialysis to assess reduction ratios and removal of urea, creatinine, phosphate, cystatin C, and indoxyl sulfate. Results The reduction ratios of urea and indoxyl sulfate were higher during PLA (76 ± 6% and 46 ± 9%, respectively) and PLA + EX interventions (77 ± 5% and 45 ± 10%, respectively) when compared to PRO (72 ± 4% and 40 ± 8%, respectively) and PRO + EX interventions (73 ± 4% and 43 ± 7%, respectively; protein effect: P = .001 and P = .023, respectively; exercise effect: P = .25 and P = .52, respectively). Nonetheless, protein ingestion resulted in greater urea removal (P = .046) during hemodialysis. Reduction ratios and removal of creatinine, phosphate, and cystatin C during hemodialysis did not differ following intradialytic protein ingestion or exercise (protein effect: P > .05; exercise effect: P>.05). Urea, creatinine, and phosphate removal were greater throughout the period with intradialytic exercise during PLA + EX and PRO + EX interventions when compared to the same period during PLA and PRO interventions (exercise effect: P = .034, P = .039, and P = .022, respectively). Conclusion The removal of uremic toxins is not compromised by protein feeding and/or exercise implementation during hemodialysis in patients with ESRD

    Intensive home hemodialysis: the best treatment in the best system

    Full text link

    Report of the potato mission of the Netherlands industry and knowledge institutions to Myanmar : March 7 - 15, 2015

    Get PDF
    This report describes a potato mission of the Netherlands industry and knowledge institutions to Myanmar

    Estimated GFR, Albuminuria, and Cognitive Performance:The Maastricht Study

    Get PDF
    BACKGROUND: Reduced estimated glomerular filtration rate (eGFR) and albuminuria have been associated with worse cognitive performance. However, few studies have examined whether these associations are confined to older individuals or may be extended to the middle-aged population. STUDY DESIGN: Cross-sectional analyses of a prospective population-based cohort study. SETTING & PARTICIPANTS: 2,987 individuals aged 40 to 75 years from the general population (The Maastricht Study). PREDICTOR: eGFR and urinary albumin excretion (UAE). OUTCOMES: Memory function, information processing speed, and executive function. MEASUREMENTS: Analyses were adjusted for demographic variables (age, sex, and educational level), lifestyle factors (smoking behavior and alcohol consumption), depression, and cardiovascular disease risk factors (glucose metabolism status, waist circumference, total to high-density lipoprotein cholesterol ratio, triglyceride level, use of lipid-modifying medication, systolic blood pressure, use of antihypertensive medication, and prevalent cardiovascular disease). RESULTS: UAE was <15mg/24 h in 2,439 (81.7%) participants, 15 to <30 mg/24 h in 309 (10.3%), and ≥30mg/24 h in 239 (8.0%). In the entire study population, UAE≥30mg/24 h was associated with lower information processing speed as compared to UAE<15mg/24 h (β [SD difference] = -0.148; 95% CI, -0.263 to -0.033) after full adjustment, whereas continuous albuminuria was not. However, significant interaction terms (P for interaction < 0.05) suggested that albuminuria was most strongly and extensively associated with cognitive performance in older individuals. Mean (±SD) eGFR, estimated by the CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration) creatinine-cystatin C equation (eGFRcr-cys), was 88.4±14.6 mL/min/1.73m(2). eGFRcr-cys was not associated with any of the domains of cognitive performance after full adjustment. However, significant interaction terms (P for interaction < 0.05) suggested that eGFRcr-cys was associated with cognitive performance in older individuals. LIMITATIONS: Cross-sectional design, which limited causal inferences. CONCLUSIONS: In the entire study population, albuminuria was independently associated with lower information processing speed, whereas eGFRcr-cys was not associated with cognitive performance. However, both were more strongly and extensively associated with cognitive performance in older individuals

    Zeolite-like liquid crystals

    Get PDF
    Zeolites represent inorganic solid-state materials with porous structures of fascinating complexity. Recently, significant progress was made by reticular synthesis of related organic solid-state materials, such as metal-organic or covalent organic frameworks. Herein we go a step further and report the first example of a fluid honeycomb mimicking a zeolitic framework. In this unique self-assembled liquid crystalline structure, transverse-lying π-conjugated rod-like molecules form pentagonal channels, encircling larger octagonal channels, a structural motif also found in some zeolites. Additional bundles of coaxial molecules penetrate the centres of the larger channels, unreachable by chains attached to the honeycomb framework. This creates a unique fluid hybrid structure combining positive and negative anisotropies, providing the potential for tuning the directionality of anisotropic optical, electrical and magnetic properties. This work also demonstrates a new approach to complex soft-matter self-assembly, by using frustration between space filling and the entropic penalty of chain extension
    • …
    corecore