114 research outputs found
Graphene transistors are insensitive to pH changes in solution
We observe very small gate-voltage shifts in the transfer characteristic of
as-prepared graphene field-effect transistors (GFETs) when the pH of the buffer
is changed. This observation is in strong contrast to Si-based ion-sensitive
FETs. The low gate-shift of a GFET can be further reduced if the graphene
surface is covered with a hydrophobic fluorobenzene layer. If a thin Al-oxide
layer is applied instead, the opposite happens. This suggests that clean
graphene does not sense the chemical potential of protons. A GFET can therefore
be used as a reference electrode in an aqueous electrolyte. Our finding sheds
light on the large variety of pH-induced gate shifts that have been published
for GFETs in the recent literature
Trees with Given Stability Number and Minimum Number of Stable Sets
We study the structure of trees minimizing their number of stable sets for
given order and stability number . Our main result is that the
edges of a non-trivial extremal tree can be partitioned into stars,
each of size or , so that every vertex is included in at most two
distinct stars, and the centers of these stars form a stable set of the tree.Comment: v2: Referees' comments incorporate
Data-Driven Induction of Shadowed Sets Based on Grade of Fuzziness
We propose a procedure devoted to the induction of a shadowed set through the post-processing of a fuzzy set, which in turn is learned from labeled data. More precisely, the fuzzy set is inferred using a modified support vector clustering algorithm, enriched in order to optimize the fuzziness grade. Finally, the fuzzy set is transformed into a shadowed set through application of an optimal alpha-cut. The procedure is tested on synthetic and real-world datasets
- …