136 research outputs found

    Domains of doping in graphene on polycrystalline gold: first-principles and scanning tunneling spectroscopy studies

    Full text link
    We have studied the graphene/gold interface by means of density functional theory (DFT) and scanning tunneling spectroscopy (STS). Weak interaction between graphene and the underlying gold surface leaves unperturbed Dirac cones in the band-structure, but they can be shifted with respect to the Fermi level of the whole system, which results in effective doping of graphene. DFT calculations revealed that the interface is extremely sensitive to the adsorption distance and to the structure of metal's surface, in particular strong variation in doping can be attributed to the specific rearrangements of substrate's atoms, such as the change in the crystallographic orientation, relaxation or other modifications of the surface. On the other hand, STS experiments have shown the presence of energetic heterogeneity in terms of the changes in the local density of states (LDOS) measured at different places on the sample. Randomly repeated regions of zero-doping and p-type doping have been identified from parabolic shape characteristics and from well defined Dirac points, respectively. The doping domains of graphene on gold seem to be related to the presence of various types of the surface structure across the sample. DFT simulations for graphene interacting with Au have shown large differences in doping induced by considered structures of substrate, in agreement with experimental findings. All these results demonstrate the possibility of engineering the electronic properties of graphene, especially tuning the doping across one flake which can be useful for applications of graphene in electronic devices

    Reversible modifications of linear dispersion - graphene between boron nitride monolayers

    Full text link
    Electronic properties of the graphene layer sandwiched between two hexagonal boron nitride sheets have been studied using the first-principles calculations and the minimal tight-binding model. It is shown that for the ABC-stacked structure in the absence of external field the bands are linear in the vicinity of the Dirac points as in the case of single-layer graphene. For certain atomic configuration, the electric field effect allows opening of a band gap of over 230 meV. We believe that this mechanism of energy gap tuning could significantly improve the characteristics of graphene-based field-effect transistors and pave the way for future electronic applications.Comment: 5 pages, v2 with slightly modified introduction and summar

    Energy gap tuning in graphene on hexagonal boron nitride bilayer system

    Full text link
    We use a tight binding approach and density functional theory calculations to study the band structure of graphene/hexagonal boron nitride bilayer system in the most stable configuration. We show that an electric field applied in the direction perpendicular to the layers significantly modifies the electronic structure of the whole system, including shifts, anticrossing and other deformations of bands, which can allow to control the value of the energy gap. It is shown that band structure of biased system may be tailored for specific requirements of nanoelectronics applications. The carriers' mobilities are expected to be higher than in the bilayer graphene devices.Comment: 10 pages, 7 figures, submitted to Physical Review

    Exclusive four-pion photoproduction in ultra-peripheral heavy-ion collisions at RHIC and LHC energies

    Get PDF
    We study the photoproduction of exclusive 2π+2π−2\pi^+2\pi^- mesons in ultra-peripheral heavy-ion collisions at RHIC and LHC energies. Predictions in photon-nucleus interactions are calculated for various resonances at central and forward rapidities. The recent H1 preliminary data are utilized to improve the description of the poorly known γp→4π±p\gamma p \to 4\pi^\pm p process. We present the comparisons of our results to the available STAR data at RHIC, and made predictions for LHC energies.Comment: 12 pages, 4 figures, 2 tables, presented at XXVI Cracow EPIPHANY Conference, LHC Physics: Standard Model and Beyon

    Defective transport properties of three-terminal carbon nanotube junctions

    Get PDF
    We investigate the transport properties of three terminal carbon based nanojunctions within the scattering matrix approach. The stability of such junctions is subordinated to the presence of nonhexagonal arrangements in the molecular network. Such "defective" arrangements do influence the resulting quantum transport observables, as a consequence of the possibility of acting as pinning centers of the correspondent wavefunction. By investigating a fairly wide class of junctions we have found regular mutual dependencies between such localized states at the carbon network and a strikingly behavior of the conductance. In particular, we have shown that Fano resonances emerge as a natural result of the interference between defective states and the extended continuum background. As a consequence, the currents through the junctions hitting these resonant states might experience variations on a relevant scale with current modulations of up to 75%.Comment: 8 pages, 8 figure

    Pragmatic Language Features of Mothers with the FMR1 Premutation are Associated with the Language Outcomes of Adolescents and Young Adults with Fragile X Syndrome

    Get PDF
    PURPOSE: Pragmatic language difficulties have been documented as part of the FMR1 premutation phenotype, yet the interplay between these features in mothers and the language outcomes of their children with fragile X syndrome is unknown. This study aimed to determine whether pragmatic language difficulties in mothers with the FMR1 premutation are related to the language development of their children. METHOD: Twenty-seven mothers with the FMR1 premutation and their adolescent/young adult sons with fragile X syndrome participated. Maternal pragmatic language violations were rated from conversational samples using the Pragmatic Rating Scale (Landa et al., 1992). Children completed standardized assessments of vocabulary, syntax, and reading. RESULTS: Maternal pragmatic language difficulties were significantly associated with poorer child receptive vocabulary and expressive syntax skills, with medium effect sizes. CONCLUSIONS: This work contributes to knowledge of the FMR1 premutation phenotype and its consequences at the family level, with the goal of identifying modifiable aspects of the child's language-learning environment that may promote the selection of treatments targeting the specific needs of families affected by fragile X. Findings contribute to our understanding of the multifaceted environment in which children with fragile X syndrome learn language and highlight the importance of family-centered intervention practices for this group

    Consistency between research and clinical diagnoses of autism among boys and girls with fragile X syndrome: Rates of autism in fragile X syndrome

    Get PDF
    Prior research suggests that 60–74% of males and 16–45% of females with fragile X syndrome (FXS) meet criteria for autism spectrum disorder (ASD) in research settings. However, relatively little is known about the rates of clinical diagnoses in FXS and whether such diagnoses are consistent with those performed in a research setting using gold standard diagnostic tools

    Monoamine oxidase-A promotes protective autophagy in human SH-SY5Y neuroblastoma cells through Bcl-2 phosphorylation.

    Get PDF
    Monoamine oxidases (MAOs) are located on the outer mitochondrial membrane and are drug targets for the treatment of neurological disorders. MAOs control the levels of neurotransmitters in the brain via oxidative deamination and contribute to reactive oxygen species (ROS) generation through their catalytic by-product H2O2. Increased ROS levels may modulate mitochondrial function and mitochondrial dysfunction is implicated in a vast array of disorders. However, the downstream effects of MAO-A mediated ROS production in a neuronal model has not been previously investigated. In this study, using MAO-A overexpressing neuroblastoma cells, we demonstrate that higher levels of MAO-A protein/activity results in increased basal ROS levels with associated increase in protein oxidation. Increased MAO-A levels result in increased Lysine-63 linked ubiquitination of mitochondrial proteins and promotes autophagy through Bcl-2 phosphorylation. Furthermore, ROS generated locally on the mitochondrial outer membrane by MAO-A promotes phosphorylation of dynamin-1-like protein, leading to mitochondrial fragmentation and clearance without complete loss of mitochondrial membrane potential. Cellular ATP levels are maintained following MAO-A overexpression and complex IV activity/protein levels increased, revealing a close relationship between MAO-A levels and mitochondrial function. Finally, the downstream effects of increased MAO-A levels are dependent on the availability of amine substrates and in the presence of exogenous substrate, cell viability is dramatically reduced. This study shows for the first time that MAO-A generated ROS is involved in quality control signalling, and increase in MAO-A protein levels leads to a protective cellular response in order to mediate removal of damaged macromolecules/organelles, but substrate availability may ultimately determine cell fate. The latter is particularly important in conditions such as Parkinson's disease, where a dopamine precursor is used to treat disease symptoms and highlights that the fate of MAO-A containing dopaminergic neurons may depend on both MAO-A levels and catecholamine substrate availability

    Oxidation of graphene on metals

    Full text link
    We use low-energy electron microscopy to investigate how graphene is removed from Ru(0001) and Ir(111) by reaction with oxygen. We find two mechanisms on Ru(0001). At short times, oxygen reacts with carbon monomers on the surrounding Ru surface, decreasing their concentration below the equilibrium value. This undersaturation causes a flux of carbon from graphene to the monomer gas. In this initial mechanism, graphene is etched at a rate that is given precisely by the same non-linear dependence on carbon monomer concentration that governs growth. Thus, during both growth and etching, carbon attaches and detaches to graphene as clusters of several carbon atoms. At later times, etching accelerates. We present evidence that this process involves intercalated oxygen, which destabilizes graphene. On Ir, this mechanism creates observable holes. It also occurs mostly quickly near wrinkles in the graphene islands, depends on the orientation of the graphene with respect to the Ir substrate, and, in contrast to the first mechanism, can increase the density of carbon monomers. We also observe that both layers of bilayer graphene islands on Ir etch together, not sequentially.Comment: 15 pages, 10 figures. Manuscript revised to improve discussion, following referee comments. Accepted for publication in Journal of Physical Chemistry C, Feb. 11, 201
    • …
    corecore