7 research outputs found

    Burial Depth and Stolon Internode Length Independently Affect Survival of Small Clonal Fragments

    Get PDF
    Disturbance can fragment plant clones into different sizes and unstabilize soils to different degrees, so that clonal fragments of different sizes can be buried in soils at different depths. As a short-term storage organ, solon internode may help fragmented clones of stoloniferous plants to withstand deeper burial in soils. We address (1) whether burial in soils decreases survival and growth of small clonal fragments, and (2) whether increasing internode length increases survival and growth of small fragments under burial. We conducted an experiment with the stoloniferous, invasive herb Alternanthera philoxeroides, in which single-node fragments with stolon internode of 0, 2, 4 and 8 cm were buried in soils at 0, 2, 4 and 8 cm depth, respectively. Increasing burial depth significantly reduced survival of the A. philoxeroides plants and increased root to shoot ratio and total stolon length, but did not change growth measures. Increasing internode length significantly increased survival and growth measures, but there was no interaction effect with burial depth on any traits measured. These results indicate that reserves stored in stolon internodes can contribute to the fitness of the A. philoxeroides plants subject to disturbance. Although burial reduced the regeneration capacity of the A. philoxeroides plants, the species may maintain the fitness by changing biomass allocation and stolon length once it survived the burial. Such responses may play an important role for A. philoxeroides in establishment and invasiveness in frequently disturbed habitats

    Plant functional traits in studies of vegetation changes in response to grazing and mowing: towards a use of more specific traits

    Get PDF
    This thesis develops a large eddy simulation framework for engineering applications using the finite element method. It focuses on the numerical formulation, the wall modelling approach as well as the generation of turbulent inflow conditions, with emphasis on incompressible flows. A low-dissipation formulation is introduced that uses a non-incremental fractional step method to stabilize the pressure and allow the use of finite element pairs that do not satisfy the inf-sup condition, such as equal order interpolation for velocity and pressure. This stabilization introduces an error of O(dt, h^2) (for linear elements) in the conservation of kinetic energy, while the final scheme preserves momentum and angular momentum. Explicit subgrid scale models are used for turbulent closure. Temporal discretization is performed through an explicit, energy-conserving Runge Kutta scheme, coupled with an eigenvalue-based time step estimator. The formulation is compared with a residual-based Variational Multiscale method in three common benchmark cases: the decaying isotropic turbulence, the Taylor-Green vortex and the turbulent channel flow at Ret = 395, 950 and 2003. Both formulations provide very accurate predictions, however it is observed that for the Variational Multiscale method, the best results are obtained for different values of the stabilization constants, depending on the case and the Reynolds number. On the other hand, the new formulation provides favorable results without any need for ad hoc tuning. The formulation is further evaluated in the flow over a sphere and the flow around an Ahmed body, where very good agreement with the reference DNS data is obtained. A new approach is introduced for wall modelling in a finite element context. Instead of the classical finite element method, where part of the domain is omitted and the wall model accounts for it, the mesh extends all the way to the wall, as is commonly done in finite differences and finite volumes. The new approach is tested in a turbulent channel flow at Ret = 2003, a neutrally stratified atmospheric boundary layer and the flow over a wall-mounted hump, where it is shown to offer a great improvement over the classical finite element method. The effect of time-averaging the wall model input, as well as moving the exchange interface further away from the wall is also evaluated. In addition, preliminary work is presented on a two-layer non-equilibrium wall model that uses time-averaging to filter the excess Reynolds stresses. It is tested in a turbulent channel flow at Ret = 2003 with accurate results. Significant savings on the computational cost are also achieved by using a wall-model grid that is coarser in the tangential directions, with minimal impact on the results. Furthermore a method of synthesizing turbulent inflow conditions through the diffusion process is compared with a precursor method on the flow over a three-dimensional hill, providing results of similar quality at significantly less computational cost. Finally, the complete framework is evaluated on the flow around the DrivAer model, a realistic car model developed to facilitate aerodynamic investigations of passenger vehicles, as well as the flow over the Bolund hill, a hill whose geometry represents a scaled-down model of the typical wind farm site. Despite the complexity of the flows and the coarse grids utilized, good agreement with the reference data is achieved.Esta tesis desarrolla un marco de simulación de grandes vortices para aplicaciones de ingeniería utilizando el método de elementos finitos. Se enfoca en la formulación numérica, el método de modelado de la pared y la generación de condiciones de entrada turbulenta, con énfasis en flujos incompresibles. Se introduce una formulación de baja disipación que utiliza un método de paso fraccional no incremental para estabilizar la presión y permitir el uso de pares de elementos finitos que no satisfacen la condición inf-sup, como la interpolación de igual orden para la velocidad y la presión. Esta estabilización introduce un error de O(dt, h^2) (para elementos lineales) en la conservación de la energía cinética, mientras que el esquema final conserva el momento y el momento angular. Se utilizan modelos explícitos de subescala para el cierre turbulento. La discretización temporal se realiza a través de un esquema de Runge Kutta explícito que conserva la energía, junto con un estimador de paso de tiempo basado en valores propios. La formulación se compara con un método `Variational Multiscale¿ basado en residuos en tres casos comunes de referencia: el decaimiento de la turbulencia isotrópica, el vórtice de Taylor-Green y el flujo del canal turbulento a Ret = 395, 950 y 2003. Ambas formulaciones proporcionan predicciones muy precisas. Sin embargo, se observa que para el método `Variational Multiscale¿, los mejores resultados se obtienen para diferentes valores de las constantes de estabilización, según el caso y el número de Reynolds. Por otro lado, la nueva formulación proporciona resultados favorables sin necesidad de ajustes ad hoc. La formulación se evalúa más a fondo en el flujo sobre una esfera y el flujo alrededor de un cuerpo de Ahmed, donde se obtiene un muy buen acuerdo con los datos de referencia del DNS. Se introduce un nuevo enfoque para el modelado de la pared en un contexto de elementos finitos. A diferencia del método clásico de elementos finitos, donde se omite parte del dominio que es tenido en cuenta por el modelo de pared, la malla se extiende hasta la pared, como se hace comúnmente en diferencias finitas y volúmenes finitos. El nuevo enfoque se prueba en un flujo de canal turbulento en Ret = 2003, una capa límite atmosférica estratificada neutral y el flujo sobre una joroba montada en la pared, donde se muestra que ofrece una gran mejora sobre el método clásico de elementos finitos. También se evalúa el efecto de promediar en el tiempo la entrada del modelo de pared, así como mover la interfaz de intercambio más lejos de la pared. Además, el trabajo preliminar se presenta en un modelo de pared de no equilibrio de dos capas que utiliza un promedio de tiempo para filtrar el exceso de tensiones de Reynolds. Se prueba en un flujo de canal turbulento en Ret = 2003 con resultados muy satisfactorios. También se logran ahorros significativos en el costo computacional mediante el uso de una malla de modelo de pared que es más gruesa en las direcciones tangenciales, con un impacto mínimo en los resultados. Además, se compara un método para generar condiciones de entrada turbulenta a través de un proceso de difusión con un método precursor en el flujo sobre una colina tridimensional. El primer método proporciona resultados de calidad similar con un costo computacional significativamente menor. Finalmente, el marco completo se evalúa sobre el flujo alrededor del modelo DrivAer, un modelo de automóvil realista desarrollado para facilitar las investigaciones aerodinámicas de los vehículos de pasajeros, así como el flujo sobre la colina de Bolund, una colina cuya geometría representa un modelo a escala de un parque eólico. A pesar de la complejidad de los flujos y del uso de mallas relativamente gruesas, se logra un buen acuerdo con los datos de referencia
    corecore