101 research outputs found

    Transverse vorticity measurements in the NASA Ames 80 x 120 wind tunnel boundary layer

    Get PDF
    The MSU compact four-wire transverse vorticity probe permits omega(sub z)(t) measurements in a nominally 1 sq mm domain. Note that a conventional coordinate system is used with x and y in the streamwise and normal directions respectively. The purpose of this investigation was to acquire time series data in the same access port at the ceiling of the 80 ft x 120 ft wind tunnel (NASA Ames Research Center) as earlier used by the Wallace group from the University of Maryland and to compare the present results with those of the three-component vorticity probe used in that earlier study

    Developing a Mobile Application‐Based Particle Image Velocimetry Tool for Enhanced Teaching and Learning in Fluid Mechanics: A Design‐Based Research Approach

    Get PDF
    A robust and intuitive understanding of fluid mechanics—the applied science of fluid motion—is foundational within many engineering disciplines, including aerospace, chemical, civil, mechanical, naval, and ocean engineering. In‐depth knowledge of fluid mechanics is critical to safe and economical design of engineering applications employed globally everyday, such as automobiles, aircraft, and sea craft, and to meeting global 21st century engineering challenges, such as developing renewable energy sources, providing access to clean water, managing the environmental nitrogen cycle, and improving urban infrastructure. Despite the fundamental nature of fluid mechanics within the broader undergraduate engineering curriculum, students often characterize courses in fluid mechanics as mathematically onerous, conceptually difficult, and aesthetically uninteresting; anecdotally, undergraduates may choose to opt‐out of fluids engineering‐related careers based on their early experiences in fluids courses. Therefore, the continued development of new frameworks for engineering instruction in fluid mechanics is needed. Toward that end, this paper introduces mobile instructional particle image velocimetry (mI‐PIV), a low‐cost, open‐source, mobile application‐based educational tool under development for smartphones and tablets running Android. The mobile application provides learners with both technological capability and guided instruction that enables them to visualize and experiment with authentic flow fields in real time. The mI‐PIV tool is designed to generate interest in and intuition about fluid flow and to improve understanding of mathematical concepts as they relate to fluid mechanics by providing opportunities for fluids‐related active engagement and discovery in both formal and informal learning contexts

    Методическая работа в дошкольной образовательной организации как условие повышения информационно-коммуникационной компетентности педагогов

    Get PDF
    Тема работы актуальна. В ВКР представлены условия, способствующие развитию компонентов ИКК педагогов. Работа имеет практическую значимост

    XLIV Konferencja Komitetu Nauk o Żywności i Żywieniu PAN: nauka, technologia i innowacje w żywności i żywieniu

    Get PDF
    Streszczenia w jęz. angielskimWydarzenie: XLIV Konferencja Komitetu Nauk o Żywności i Żywieniu PAN; Łódź, 3-4 lipca 2019 r.; http://pan.binoz.p.lodz.plOrganizator konferencji: Wydział Biotechnologii i Nauk o Żywności PŁ; Komitet Nauk o Żywności i Żywieniu PAN; Polskie Towarzystwo Technologów ŻywnościProjekt graficzny okładki: Grzelczyk, J.Projekt graficzny okładki: Klewicki, R.Skład: Oracz, J.Za treść zamieszczonych materiałów odpowiadają ich autorzy.Sesje Naukowe Komitetu Nauk o Żywności i Żywieniu Polskiej Akademii Nauk (KNoŻiŻ PAN) są organizowane przez krajowe ośrodki akademickie związane z naukami o żywności i żywieniu w dwuletnich cyklach. Sesje te stanowią największe w skali kraju forum prezentacji najnowszych osiągnięć naukowych i technologicznych w dziedzinie technologii żywności i żywienia człowieka, jak również wymiany poglądów oraz doświadczeń pracowników jednostek naukowych i przedstawicieli przemysłu spożywczego. Tematyka XLIV Sesji dotyczyć będzie szeroko pojętej problematyki związanej z oddziaływaniem żywności i odżywiania na zdrowie człowieka

    The Kinetics of Redox Reactions of Mn(II) and Mn(III) in Aqueous Systems: Homogenous Autoxidation of Mn(II) and the Formation and Disappearance of Mn(III) Complexes

    Get PDF
    The kinetics of manganese redox reactions are important for understanding redox cycles in natural waters. This study examined the kinetics of the homogenous oxidation of Mn(II) and formation and disappearance of Mn(III) complexes. The oxidation of Mn(II) was studied to determine the homogenous oxidation rate in the absence of solid surfaces and biological activity. Experiments were conducted at 35, 45, 50, and 60°C. The pH was 8.0. The reaction solution was prepared so that at no time during the experiment was the solubility product of any solid phase exceeded. Oxidized Mn was measured using leuco crystal violet dye reagent. Measurable rates were observed for the 45, 50, and 60°C experiments. An Arrhenius expression was fitted to the rates in order to extrapolate to 25°C. The second order rate constant for the rate expression -d[Mn(II)]/dt = k⋅[Mn(II)⋅[O2] was calculated to be 6.9 ± 1.6 x 10-7 M-1s-1. The kinetics of disappearance of Mn(III) complexes from aqueous solution were studied. Complexes of pyrophosphate (P2O74-), ethylenediaminetetracetate (EDTA), and citrate (CIT) were synthesized from MnO4- and a Mn(II) salt in a 1:4 ratio in the presence of excess ligand. Concentrations of Mn(III) complex were monitored spectrophotometrically. Experiments were conducted in the pH range of 6 to 9 for pyrophosphate and citrate and 3 to 9 for EDTA. The total manganese concentration was varied between 0.5 and 1.0 mM. Ligand concentrations were varied from 0.5mM to 200mM. Experiments were also conducted to examine the effects of oxygen, light, and ionic strength. Oxygen had a significant effect on only the citrate complex; ionic strength affected only the EDTA complex. Light was found to be insignificant in all cases. The Mn(III)P2O7 complex was found to disappear from solution relatively slowly providing the ligand was in at least ten-fold excess. Disappearance time scales were on the order of 107 s. The Mn(III)EDTA complex reacted rather rapidly with time scales on the order of 104 s. There were at least two Mn(III)EDTA complexes, a protonated one more stable at low pH and an unprotonated one more stable at high pH. The pKa of the complex appeared to be approximately 5.3. The rate of disappearance of the Mn(III)EDTA had a fractional dependence on pH, probably indicative of an unknown pH dependent intermediate in the decomposition of the complex. The rate was found to increase with increased EDTA, indicating that the rate limiting step was an outer sphere electron transfer from Mn(III)EDTA to an excess EDTA. The rate law for the reaction above pH 6 was found to be -d[Mn(III)EDTA]/dt = k⋅[H+]0.31⋅[EDTA]1.35⋅[Mn(III)EDTA] The Mn(III)CIT complex was found to undergo a redox cycle. The Mn(III)CIT complex was reduced, forming Mn(II). The Mn(II) was then oxidized in the presence of oxygen to re-form the Mn(III) complex. Both pH and ligand concentration were found to have fractional orders in the rate expression, largely due to the competition between the reduction and the oxidation and possibly complicated by radicals formed by the reaction. The dissolution of MnOOH by pyrophosphate, EDTA, and citrate was studied. A MnOOH solid was synthesized by oxidizing Mn(II) with hydrogen peroxide at elevated temperatures and high pH. The solid was identified by X-ray diffraction to be β-MnOOH, with some contamination by Mn3O4. Throughout the dissolution process samples were removed by pipette and filtered. The filtrate was analyzed spectrophotometrically for the presence of Mn(III) complexes and total Mn. The solids captured on the filter were analyzed by an iodine titration technique, coupled with formaldoxime measurements to determine the average oxidation state of the solids. The effects of pH and ligand concentration on rates were examined. Pyrophosphate was found to dissolve the Mn(III) solids nonreductively, producing the Mn(III) complex in solution. The dissolution reaction rate was dependent on approximately the half power of [H+], possibly indicative of a surface binding ligand binding on the surface. No dependence on the ligand concentration was found down to a ligand:Mn ratio of 10:1, probably indicative of surface site saturation by ligand. EDTA was found to dissolve the solids reductively with no Mn(III) solution species being observed. The dependence on [H+] was approximately one half order, possibly indicative of a surface binding. Citrate dissolved the MnOOH solids in what appeared to be two steps. There seemed to be an initial stage of nonreductive dissolution, followed by a reductive dissolution. The rate and duration of the two different stages depended on pH. The dependence was slightly greater than first order in [H+], possibly indicating the reaction becomes controlled by reactions of the radicals produced by oxidation of the citrate. This study has shown that Mn(III) complexes can be formed in pH conditions relevant to natural waters. These complexes can be formed either through oxidation of Mn(II) by strong oxidants in the presence of stabilizing ligands or by dissolution of Mn(III)-containing solids by stabilizing ligands. Once formed, the lifetime of these complexes will depend on the nature of the ligand and chemical characteristics of the aquatic environment. If the ligand does not rapidly reduce Mn(III) these complexes can be powerful mobile oxidants which could significantly affect the local redox environment.</p
    corecore