143 research outputs found

    The oblique impingement of an axisymmetric jet

    Get PDF
    The mechanics of the oblique impingement of an axisymmetric jet on a plane surface are examined in detail. The stagnation point is discussed. A schematic drawing of the problem and coordinate system used to describe the flow field are given. The kinematic features of the flow above the plate are examined in the context of the conservation of mass, the vorticity of the jet, and the vorticity introduced by the jetplate interaction. The dynamic features of the flow are examined in terms of the surface pressure distribution and the cause-effect relationships which exist between the pressure and velocity/vorticity distributions. Flow calculations performed are given. The investigation is relevant to the flow resulting from the interaction of the propulsion jet with the main airfoil (STOL aircraft), and is appropriate to an over- or under- wing configuration

    Mean flow characteristics for the oblique impingement of an axisymmetric jet

    Get PDF
    The oblique impingement of an axisymmetric jet has been investigated. A summary of the data and the analytical interpretations of the dominant mechanisms which influence the flow are reported. The major characteristics of the shallow angle oblique jet impingement flow field are: (1) minimal dynamic spreading as revealed by the surface pressure field, (2) pronounced kinematic spreading as revealed by the jet flow velocity field, (3) a pronounced upstream shift of the stagnation point from the maximum pressure point, (4) the production of streamwise vorticity by the impingement process

    Fluid Dynamic Verification Experiments on STS-70

    Get PDF
    Fluid dynamic experiments were flown on STS-70 as phase two of the engineering evaluation of the first bioreactor Engineering Development Unit (EDU#1). The phase one experiments were comparative cell cultures in identical units on earth and onboard STS-70. In phase two, two types of fluid dynamic experiments were performed. Qualitative comparisons of the basic flow patterns were evaluated with the use of 'dye' streaklines formed from alternate injections of either a mild acid or base solution into the external flow loop that was then perfused into the vessel. The presence of Bromothymol Blue in the fluid then caused color changes from yellow to blue or vice versa, indicating the basic fluid motions. This reversible change could be repeated as desired. In the absence of significant density differences in the fluid, the flow patterns in space should be the same as on earth. Video tape records of the flow patterns for a wide range of operating conditions were obtained. The second type of fluid dynamic experiment was the quantitative evaluation of the trajectories of solid beads of various densities and sizes. The beads were introduced into the vessel and the paths recorded on video tape, with the vessel operated at various rotation rates and flow perfusion rates. Because of space limitations, the video camera was placed as close as possible to the vessel, resulting in significant optical distortion. This report describes the analysis methods to obtain comparisons between the in-flight fluid dynamics and numerical models of the flow field. The methods include optical corrections to the video images and calculation of the bead trajectories for given operating conditions and initial bead locations

    Acoustics measurements in normal jet impingement

    Get PDF
    The dependence of far field acoustic measurements for a uniform jet on nozzle to plate spacing for small dimensionless spacings (h/d - 0.75 to 3.0) was investigated. Spectra from a real time analyzer were read and processed by an HP 2116 minicomputer in on-line mode. Similar data was generated for a fully developed pipe flow exit condition jet to compare with other investigations. The data base for normal jet impingement was extended to smaller values of nozzle to plate spacing. The effects of slight noise heating (30 deg rise) of the jet on the far field noise produced by the impinging jet are demonstrated

    Influence of van der Waals forces on the adsorption structure of benzene on silicon studied using density functional theory

    Get PDF
    Two different adsorption configurations of benzene on the Si(001)-(2 x 1) surface, the tight-bridge and butterfly structures, were studied using density functional theory. Several exchange and correlation functionals were used, including the recently developed van der Waals density functional (vdW-DF), which accounts for the effect of van der Waals forces. In contrast to the Perdew-Burke-Ernzerhof (PBE), revPBE, and other generalized-gradient approximation functionals, the vdW-DF finds that, for most coverages, the adsorption energy of the butterfly structure is greater than that of the tight-bridge structure

    Miniature Bioreactor System for Long-Term Cell Culture

    Get PDF
    A prototype miniature bioreactor system is designed to serve as a laboratory benchtop cell-culturing system that minimizes the need for relatively expensive equipment and reagents and can be operated under computer control, thereby reducing the time and effort required of human investigators and reducing uncertainty in results. The system includes a bioreactor, a fluid-handling subsystem, a chamber wherein the bioreactor is maintained in a controlled atmosphere at a controlled temperature, and associated control subsystems. The system can be used to culture both anchorage-dependent and suspension cells, which can be either prokaryotic or eukaryotic. Cells can be cultured for extended periods of time in this system, and samples of cells can be extracted and analyzed at specified intervals. By integrating this system with one or more microanalytical instrument(s), one can construct a complete automated analytical system that can be tailored to perform one or more of a large variety of assays

    Electronic shell structure and chemisorption on gold nanoparticles

    Get PDF
    We use density functional theory (DFT) to investigate the electronic structure and chemical properties of gold nanoparticles. Different structural families of clusters are compared. For up to 60 atoms we optimize structures using DFT-based simulated annealing. Cluster geometries are found to distort considerably, creating large band gaps at the Fermi level. For up to 200 atoms we consider structures generated with a simple EMT potential and clusters based on cuboctahedra and icosahedra. All types of cluster geometry exhibit jellium-like electronic shell structure. We calculate adsorption energies of several atoms on the cuboctahedral clusters. Adsorption energies are found to vary abruptly at magic numbers. Using a Newns-Anderson model we find that the effect of magic numbers on adsorption energy can be understood from the location of adsorbate-induced states with respect to the cluster Fermi level.Comment: 14 pages, 18 figure

    Characteristics of low energy ions in the Heavy Ions In Space (HIIS) experiment

    Get PDF
    We present preliminary data on heavy ions (Z greater than or equal to 10) detected in the topmost Lexan sheets of the track detector stacks of the Heavy Ions in space (HIIS) experiment (M0001) on LDEF. The energy interval covered by these observations varies with the element, with (for example) Ne observable at 18-100 MeV nuc and Fe at 45-200 MeV/nuc. All of the observed ions are at energies far below the geomagnetic cutoff for fully-ionized particles at the LDEF orbit. Above 50 MeV/nuc (where most of our observed particles are Fe), the ions arrive primarily from the direction of lowest geomagnetic cutoff. This suggests that these particles originate outside the magnetosphere from a source with a steeply-falling spectrum and may therefore be associated with solar energetic particle (SEP) events. Below 50 MeV/nuc, the distribution of arrival directions suggests that most of the observed heavy ions are trapped in the Earth's magnetic field. Preliminary analysis, however, shows that these trapped heavy ions have a very surprising composition: they include not only Ne and Ar, which are expected from the trapping of anomalous cosmic rays (ACR's), but also Mg and Si, which are not part of the anomalous component. Our preliminary analysis shows that trapped heavy ions at 12 less than or equal to Zeta less than or equal to 14 have a steeply-falling spectrum, similar to that reported by the Kiel experiment (exp 1,2,3) on LDEF (M0002) for trapped Ar and Fe at E less than 50 MeV/nuc. The trapped Mg, Si, and Fe may also be associated with SEP events, but the mechanism by which they have appeared to deep in the inner magnetosphere requires further theoretical investigation

    Unusual association of alveolar rhabdomyosarcoma with pancreatic metastasis: emerging role of PET-CT in tumor staging

    Get PDF
    Pancreatic metastases in childhood cancer have been rarely reported in the radiology literature although ample evidence exists in pathology reports for its occurrence in patients with alveolar rhabdomyosarcomas (RMS). Assess the occurrence of pancreatic metastases in alveolar rhabdomyosarcomas, increase awareness of this association and reassess current staging protocols. Three major oncology centers reviewed their records and imaging examinations. Patients’ history and demographics, primary tumor site and histology, presence of tumor recurrence, and presence and location of other metastases were reviewed. Pancreatic metastases occurred in eight patients with alveolar RMS. Four of these presented at diagnosis and four with disease recurrence. In recurrent disease, the duration between the diagnosis of the primary tumor and pancreatic metastases varied from 8 months to 6 years (mean ± SD: 2.38 ± 2.49 years). In all patients who received PET scans, pancreatic metastases showed a marked FDG-uptake, but had variable detectability with CT. Pancreatic metastases were not associated with certain primary tumor locations or presence of other metastases, mandating an evaluation of the pancreas in all cases of alveolar rhabdomyosarcomas. Radiologists should be sensitized and actively evaluate the pancreas in patients with alveolar RMS. Optimizing CT and PET-CT protocols may increase the diagnostic yield
    • …
    corecore