568 research outputs found

    Linear bands, zero-momentum Weyl semimetal, and topological transition in skutterudite-structure pnictides

    Full text link
    It was reported earlier [Phys. Rev. Lett. 106, 056401 (2011)] that the skutterudite structure compound CoSb3_3 displays a unique band structure with a topological transition versus a symmetry-preserving sublattice (Sb) displacement very near the structural ground state. The transition is through a massless Dirac-Weyl semimetal, point Fermi surface phase which is unique in that (1) it appears in a three dimensional crystal, (2) the band critical point occurs at kk=0, and (3) linear bands are degenerate with conventional (massive) bands at the critical point (before inclusion of spin-orbit coupling). Further interest arises because the critical point separates a conventional (trivial) phase from a topological phase. In the native cubic structure this is a zero-gap topological semimetal; we show how spin-orbit coupling and uniaxial strain converts the system to a topological insulator (TI). We also analyze the origin of the linear band in this class of materials, which is the characteristic that makes them potentially useful in thermoelectric applications or possibly as transparent conductors. We characterize the formal charge as Co+^{+} d8d^8, consistent with the gap, with its 3ˉ\bar{3} site symmetry, and with its lack of moment. The Sb states are characterized as pxp_x (separately, pyp_y) σ\sigma-bonded Sb4Sb_4 ring states occupied and the corresponding antibonding states empty. The remaining (locally) pzp_z orbitals form molecular orbitals with definite parity centered on the empty 2a2a site in the skutterudite structure. Eight such orbitals must be occupied; the one giving the linear band is an odd orbital singlet A2uA_{2u} at the zone center. We observe that the provocative linearity of the band within the gap is a consequence of the aforementioned near-degeneracy, which is also responsible for the small band gap.Comment: 10 pages, 7 figure

    Pressure-induced structural transitions in MgH2{_2}

    Full text link
    The stability of MgH2_2 has been studied up to 20~GPa using density-functional total-energy calculations. At ambient pressure α\alpha-MgH2{_2} takes a TiO2_2-rutile-type structure. α\alpha-MgH2_2 is predicted to transform into γ\gamma-MgH2{_2} at 0.39~GPa. The calculated structural data for α\alpha- and γ\gamma-MgH2{_2} are in very good agreement with experimental values. At equilibrium the energy difference between these modifications is very small, and as a result both phases coexist in a certain volume and pressure field. Above 3.84~GPa γ\gamma-MgH2{_2} transforms into β\beta-MgH2{_2}; consistent with experimental findings. Two further transformations have been identified at still higher pressure: i) β\beta- to δ\delta-MgH2{_2} at 6.73 GPa and (ii) δ\delta- to ϵ\epsilon-MgH2{_2} at 10.26~GPa.Comment: 4 pages, 4 figure

    Valence-state mixing and separation in SmBaFe2O5+w

    Get PDF
    A mixed-valence state, formally denoted as Fe2.5+, is observed in the 300 K Mössbauer spectra of the most reduced samples of SmBaFe2O5+w. Upon cooling below the Verwey-type transition temperature (TV≈200K), the component assigned to Fe2.5+ separates into a high-spin Fe3+ state and an Fe2+ state with an unusually low internal field. The separation of the mixed-valence state at TV is also confirmed by magnetic susceptibility measurements and differential scanning calorimetry. A model is proposed which accounts for the variation of the amount of the mixed-valence state with the oxygen content parameter w.Peer reviewe

    Valence-state mixing and separation in SmBaFe2O5+w

    Get PDF
    A mixed-valence state, formally denoted as Fe2.5+, is observed in the 300 K Mössbauer spectra of the most reduced samples of SmBaFe2O5+w. Upon cooling below the Verwey-type transition temperature (TV≈200K), the component assigned to Fe2.5+ separates into a high-spin Fe3+ state and an Fe2+ state with an unusually low internal field. The separation of the mixed-valence state at TV is also confirmed by magnetic susceptibility measurements and differential scanning calorimetry. A model is proposed which accounts for the variation of the amount of the mixed-valence state with the oxygen content parameter w.Peer reviewe

    Impact of Renal Impairment on Beta-Blocker Efficacy in Patients With Heart Failure.

    Get PDF
    BACKGROUND: Moderate and moderately severe renal impairment are common in patients with heart failure and reduced ejection fraction, but whether beta-blockers are effective is unclear, leading to underuse of life-saving therapy. OBJECTIVES: This study sought to investigate patient prognosis and the efficacy of beta-blockers according to renal function using estimated glomerular filtration rate (eGFR). METHODS: Analysis of 16,740 individual patients with left ventricular ejection fraction <50% from 10 double-blind, placebo-controlled trials was performed. The authors report all-cause mortality on an intention-to-treat basis, adjusted for baseline covariates and stratified by heart rhythm. RESULTS: Median eGFR at baseline was 63 (interquartile range: 50 to 77) ml/min/1.73 m2; 4,584 patients (27.4%) had eGFR 45 to 59 ml/min/1.73 m2, and 2,286 (13.7%) 30 to 44 ml/min/1.73 m2. Over a median follow-up of 1.3 years, eGFR was independently associated with mortality, with a 12% higher risk of death for every 10 ml/min/1.73 m2 lower eGFR (95% confidence interval [CI]: 10% to 15%; p < 0.001). In 13,861 patients in sinus rhythm, beta-blockers reduced mortality versus placebo; adjusted hazard ratio (HR): 0.73 for eGFR 45 to 59 ml/min/1.73 m2 (95% CI: 0.62 to 0.86; p < 0.001) and 0.71 for eGFR 30 to 44 ml/min/1.73 m2 (95% CI: 0.58 to 0.87; p = 0.001). The authors observed no deterioration in renal function over time in patients with moderate or moderately severe renal impairment, no difference in adverse events comparing beta-blockers with placebo, and higher mortality in patients with worsening renal function on follow-up. Due to exclusion criteria, there were insufficient patients with severe renal dysfunction (eGFR <30 ml/min/1.73 m2) to draw conclusions. In 2,879 patients with atrial fibrillation, there was no reduction in mortality with beta-blockers at any level of eGFR. CONCLUSIONS: Patients with heart failure, left ventricular ejection fraction <50% and sinus rhythm should receive beta-blocker therapy even with moderate or moderately severe renal dysfunction

    Coulomb correlation effects in zinc monochalcogenides

    Full text link
    Electronic structure and band characteristics for zinc monochalcogenides with zinc-blende- and wurtzite-type structures are studied by first-principles density-functional-theory calculations with different approximations. It is shown that the local-density approximation underestimates the band gap and energy splitting between the states at the top of the valence band, misplaces the energy levels of the Zn-3d states, and overestimates the crystal-field-splitting energy. Regardless of the structure type considered, the spin-orbit-coupling energy is found to be overestimated for ZnO and underestimated for ZnS with wurtzite-type structure, and more or less correct for ZnSe and ZnTe with zinc-blende-type structure. The order of the states at the top of the valence band is found to be anomalous for ZnO in both zinc-blende- and wurtzite-type structure, but is normal for the other zinc monochalcogenides considered. It is shown that the Zn-3d electrons and their interference with the O-2p electrons are responsible for the anomalous order. The typical errors in the calculated band gaps and related parameters for ZnO originate from strong Coulomb correlations, which are found to be highly significant for this compound. The LDA+U approach is by and large found to correct the strong correlation of the Zn-3d electrons, and thus to improve the agreement with the experimentally established location of the Zn-3d levels compared with that derived from pure LDA calculations

    An economic evaluation of rosuvastatin treatment in systolic heart failure: evidence from the CORONA trial

    Get PDF
    Aims: To estimate the cost-effectiveness of 10 mg rosuvastatin daily for older patients with systolic heart failure in the Controlled Rosuvastatin Multinational Study in Heart Failure (CORONA) trial. Methods and results: This within trial analysis of CORONA used major cardiovascular (CV) events as the outcome measure. Resource use was valued and the costs of hospitalizations, procedures, and statin use compared. Cost-effectiveness was estimated as cost per major CV event avoided. There were significantly fewer major CV events in the rosuvastatin group compared with the placebo group (1.04 vs. 1.20 per patient; difference 0.164; 95% CI: 0.075–0.254, P &#60; 0.001). The average cost of CV hospitalizations and procedures was significantly lower for those receiving rosuvastatin (£1531 vs. £1769; difference £238; 95% CI: £73–403, P = 0.005); the additional cost of the statin resulted in significantly higher total costs for the rosuvastatin group (£1769 vs. £2072; difference £303; 95% CI: £138–468, P &#60; 0.001). Overall, rosuvastatin was found to cost £1840 (95% CI: £562–6028) per major CV event avoided. Conclusion: This economic analysis showed that a significant reduction in major CV events with rosuvastatin led to significantly reduced costs of CV hospitalizations and procedures. The reduction in associated costs for major CV events was found to offset partially (by 44%) the cost of rosuvastatin treatment in patients with systolic heart failure

    Electronic structure, phase stability and chemical bonding in Th2_2Al and Th2_2AlH4_4

    Full text link
    We present the results of theoretical investigation on the electronic structure, bonding nature and ground state properties of Th2_2Al and Th2_2AlH4_4 using generalized-gradient-corrected first-principles full-potential density-functional calculations. Th2_2AlH4_4 has been reported to violate the "2 \AA rule" of H-H separation in hydrides. From our total energy as well as force-minimization calculations, we found a shortest H-H separation of 1.95 {\AA} in accordance with recent high resolution powder neutron diffraction experiments. When the Th2_2Al matrix is hydrogenated, the volume expansion is highly anisotropic, which is quite opposite to other hydrides having the same crystal structure. The bonding nature of these materials are analyzed from the density of states, crystal-orbital Hamiltonian population and valence-charge-density analyses. Our calculation predicts different nature of bonding for the H atoms along aa and cc. The strongest bonding in Th2_2AlH4_4 is between Th and H along cc which form dumb-bell shaped H-Th-H subunits. Due to this strong covalent interaction there is very small amount of electrons present between H atoms along cc which makes repulsive interaction between the H atoms smaller and this is the precise reason why the 2 {\AA} rule is violated. The large difference in the interatomic distances between the interstitial region where one can accommodate H in the acac and abab planes along with the strong covalent interaction between Th and H are the main reasons for highly anisotropic volume expansion on hydrogenation of Th2_2Al.Comment: 14 pages, 9 figure

    Origin of magnetoelectric behavior in BiFeO3_3

    Full text link
    The magnetoelectric behavior of BiFeO3_3 has been explored on the basis of accurate density functional calculations. The structural, electronic, magnetic, and ferroelectric properties of BiFeO3_3 are predicted correctly without including strong correlation effect in the calculation. Moreover, the experimentally-observed elongation of cubic perovskite-like lattice along the [111] direction is correctly reproduced. At high pressure we predicted a pressure-induced structural transition and the total energy calculations at expanded lattice show two lower energy ferroelectric phases, closer in energy to the ground state phase. Band-structure calculations show that BiFeO3_3 will be an insulator in A- and G-type antiferromagnetic phases and a metal in other magnetic configurations. Chemical bonding in BiFeO3_3 has been analyzed using various tools and electron localization function analysis shows that stereochemically active lone-pair electrons at the Bi sites are responsible for displacements of the Bi atoms from the centro-symmetric to the noncentrosymmetric structure and hence the ferroelectricity. A large ferroelectric polarization (88.7 μ\muC/cm2^{2}) is predicted in accordance with recent experimental findings. The net polarization is found to mainly (>> 98%) originate from Bi atoms. Moreover the large scatter in experimentally reported polarization values is due to the large anisotropy in the spontaneous polarization.Comment: 19 pages, 12 figures, 4 table
    • …
    corecore