128 research outputs found
Single-molecule probing of incommensurate biphenyl
Our data on the distribution of purely-electronic linewidths of terrylene single molecules in incommensurate biphenyl crystals are compared with the data of other groups for different low-temperature organic solid hosts and with results of numerical simulations. The first two moments of the distributions measured within a narrow temperature interval have been used to calculate a single dimensionless parameter characterizing each of the respective hosts — the variation coefficient. It appears that different amorphous hosts have similar values of this coefficient, but the value obtained for the incommensurate crystal of biphenyl is significantly different. One can conclude that the remarkable single-molecule line broadening in biphenyl at 1.8 K cannot be solely explained by the interaction with two-level systems, which is considered to cause the broadening in amorphous hosts
Molecular probing of low-temperature incommensurate phases
Two-dimensional (2D) excitation-emission spectra of biphenyl doped with free-base chlorin were measured at 5 K under various pressures up to 350 MPa. Besides the features related to zero-phonon lines and their phonon sidebands, a broad spectral band amounting to 80% of the total intensity at 5 K was revealed in the 2D spectra. The obtained inhomogeneous distribution function shows drastic changes with increasing pressure — the triplet structure observable at normal pressure in the incommensurate phase ICIII of biphenyl converges to a singlet in the high-pressure commensurate phase CI. These observations are assumed to reflect specific for incommensurate phases relaxation after an optical excitation of probe molecules and interaction of them with the incommensurate modulation wave
Assessing the role of EO in biodiversity monitoring: options for integrating in-situ observations with EO within the context of the EBONE concept
The European Biodiversity Observation Network (EBONE) is a European contribution on terrestrial monitoring to GEO BON, the Group on Earth Observations Biodiversity Observation Network. EBONE’s aims are to develop a system of biodiversity observation at regional, national and European levels by assessing existing approaches in terms of their validity and applicability starting in Europe, then expanding to regions in Africa. The objective of EBONE is to deliver:
1. A sound scientific basis for the production of statistical estimates of stock and change of key indicators;
2. The development of a system for estimating past changes and forecasting and testing policy options and management strategies for threatened ecosystems and species;
3. A proposal for a cost-effective biodiversity monitoring system.
There is a consensus that Earth Observation (EO) has a role to play in monitoring biodiversity. With its capacity to observe detailed spatial patterns and variability across large areas at regular intervals, our instinct suggests that EO could deliver the type of spatial and temporal coverage that is beyond reach with in-situ efforts. Furthermore, when considering the emerging networks of in-situ observations, the prospect of enhancing the quality of the information whilst reducing cost through integration is compelling. This report gives a realistic assessment of the role of EO in biodiversity monitoring and the options for integrating in-situ observations with EO within the context of the EBONE concept (cfr. EBONE-ID1.4). The assessment is mainly based on a set of targeted pilot studies. Building on this assessment, the report then presents a series of recommendations on the best options for using EO in an effective, consistent and sustainable biodiversity monitoring scheme.
The issues that we faced were many:
1. Integration can be interpreted in different ways. One possible interpretation is: the combined use of independent data sets to deliver a different but improved data set; another is: the use of one data set to complement another dataset.
2. The targeted improvement will vary with stakeholder group: some will seek for more efficiency, others for more reliable estimates (accuracy and/or precision); others for more detail in space and/or time or more of everything.
3. Integration requires a link between the datasets (EO and in-situ). The strength of the link between reflected electromagnetic radiation and the habitats and their biodiversity observed in-situ is function of many variables, for example: the spatial scale of the observations; timing of the observations; the adopted nomenclature for classification; the complexity of the landscape in terms of composition, spatial structure and the physical environment; the habitat and land cover types under consideration.
4. The type of the EO data available varies (function of e.g. budget, size and location of region, cloudiness, national and/or international investment in airborne campaigns or space technology) which determines its capability to deliver the required output.
EO and in-situ could be combined in different ways, depending on the type of integration we wanted to achieve and the targeted improvement. We aimed for an improvement in accuracy (i.e. the reduction in error of our indicator estimate calculated for an environmental zone). Furthermore, EO would also provide the spatial patterns for correlated in-situ data.
EBONE in its initial development, focused on three main indicators covering:
(i) the extent and change of habitats of European interest in the context of a general habitat assessment;
(ii) abundance and distribution of selected species (birds, butterflies and plants); and
(iii) fragmentation of natural and semi-natural areas.
For habitat extent, we decided that it did not matter how in-situ was integrated with EO as long as we could demonstrate that acceptable accuracies could be achieved and the precision could consistently be improved. The nomenclature used to map habitats in-situ was the General Habitat Classification. We considered the following options where the EO and in-situ play different roles:
using in-situ samples to re-calibrate a habitat map independently derived from EO; improving the accuracy of in-situ sampled habitat statistics, by post-stratification with correlated EO data; and using in-situ samples to train the classification of EO data into habitat types where the EO data delivers full coverage or a larger number of samples.
For some of the above cases we also considered the impact that the sampling strategy employed to deliver the samples would have on the accuracy and precision achieved.
Restricted access to European wide species data prevented work on the indicator ‘abundance and distribution of species’.
With respect to the indicator ‘fragmentation’, we investigated ways of delivering EO derived measures of habitat patterns that are meaningful to sampled in-situ observations
Synthesis and Characterization of Cobalt and Nitrogen Co Doped Peat Derived Carbon Catalysts for Oxygen Reduction in Acidic Media
In this study, several peat derived carbons PDC were synthesized using various carbonization protocols. It was found that depending on the carbonization method, carbons with very different surface morphologies, elemental compositions, porosities, and oxygen reduction reaction ORR activities were obtained. Five carbons were used as carbon supports to synthesize Co N PDC catalysts, and five different ORR catalysts were acquired. The surface analysis revealed that a higher nitrogen content, number of surface oxide defects, and higher specific surface area lead to higher ORR activity of the Co N PDC catalysts in acidic solution. The catalyst Co N C 2 ZnCl2 , which was synthesized from ZnCl2 activated and pyrolyzed peat, showed the highest ORR activity in both rotating disk electrode and polymer electrolyte membrane fuel cell tests. A maximum power density value of 210 mW cm2 has been obtained. The results of this study indicate that PDCs are promising candidates for the synthesis of active non platinum group metal type catalyst
Morbidity and mortality after anaesthesia in early life: results of the European prospective multicentre observational study, neonate and children audit of anaesthesia practice in Europe (NECTARINE)
Background: Neonates and infants requiring anaesthesia are at risk of physiological instability and complications, but triggers for peri-anaesthetic interventions and associations with subsequent outcome are unknown. Methods: This prospective, observational study recruited patients up to 60 weeks' postmenstrual age undergoing anaesthesia for surgical or diagnostic procedures from 165 centres in 31 European countries between March 2016 and January 2017. The primary aim was to identify thresholds of pre-determined physiological variables that triggered a medical intervention. The secondary aims were to evaluate morbidities, mortality at 30 and 90 days, or both, and associations with critical events. Results: Infants (n=5609) born at mean (standard deviation [SD]) 36.2 (4.4) weeks postmenstrual age (35.7% preterm) underwent 6542 procedures within 63 (48) days of birth. Critical event(s) requiring intervention occurred in 35.2% of cases, mainly hypotension (>30% decrease in blood pressure) or reduced oxygenation (SpO2 <85%). Postmenstrual age influenced the incidence and thresholds for intervention. Risk of critical events was increased by prior neonatal medical conditions, congenital anomalies, or both (relative risk [RR]=1.16; 95% confidence interval [CI], 1.04–1.28) and in those requiring preoperative intensive support (RR=1.27; 95% CI, 1.15–1.41). Additional complications occurred in 16.3% of patients by 30 days, and overall 90-day mortality was 3.2% (95% CI, 2.7–3.7%). Co-occurrence of intraoperative hypotension, hypoxaemia, and anaemia was associated with increased risk of morbidity (RR=3.56; 95% CI, 1.64–7.71) and mortality (RR=19.80; 95% CI, 5.87–66.7). Conclusions: Variability in physiological thresholds that triggered an intervention, and the impact of poor tissue oxygenation on patient's outcome, highlight the need for more standardised perioperative management guidelines for neonates and infants. Clinical trial registration: NCT02350348
Difficult tracheal intubation in neonates and infants. NEonate and Children audiT of Anaesthesia pRactice IN Europe (NECTARINE): a prospective European multicentre observational study
Background: Neonates and infants are susceptible to hypoxaemia in the perioperative period. The aim of this study was to analyse interventions related to anaesthesia tracheal intubations in this European cohort and identify their clinical consequences. Methods: We performed a secondary analysis of tracheal intubations of the European multicentre observational trial (NEonate and Children audiT of Anaesthesia pRactice IN Europe [NECTARINE]) in neonates and small infants with difficult tracheal intubation. The primary endpoint was the incidence of difficult intubation and the related complications. The secondary endpoints were the risk factors for severe hypoxaemia attributed to difficult airway management, and 30 and 90 day outcomes. Results: Tracheal intubation was planned in 4683 procedures. Difficult tracheal intubation, defined as two failed attempts of direct laryngoscopy, occurred in 266 children (271 procedures) with an incidence (95% confidence interval [CI]) of 5.8% (95% CI, 5.1e6.5). Bradycardia occurred in 8% of the cases with difficult intubation, whereas a significant decrease in oxygen saturation (SpO2<90% for 60 s) was reported in 40%. No associated risk factors could be identified among comorbidities, surgical, or anaesthesia management. Using propensity scoring to adjust for confounders, difficult anaesthesia tracheal intubation did not lead to an increase in 30 and 90 day morbidity or mortality. Conclusions: The results of the present study demonstrate a high incidence of difficult tracheal intubation in children less than 60 weeks post-conceptual age commonly resulting in severe hypoxaemia. Reassuringly, the morbidity and mortality at 30 and 90 days was not increased by the occurrence of a difficult intubation event. Clinical trial registration: NCT02350348
- …