933 research outputs found

    The Discovery of the Most Metal-Rich White Dwarf: Composition of a Tidally Disrupted Extrasolar Dwarf Planet

    Full text link
    Cool white dwarf stars are usually found to have an outer atmosphere that is practically pure in hydrogen or helium. However, a small fraction have traces of heavy elements that must originate from the accretion of extrinsic material, most probably circumstellar matter. Upon examining thousands of Sloan Digital Sky Survey spectra, we discovered that the helium-atmosphere white dwarf SDSS J073842.56+183509.6 shows the most severe metal pollution ever seen in the outermost layers of such stars. We present here a quantitative analysis of this exciting star by combining high S/N follow-up spectroscopic and photometric observations with model atmospheres and evolutionary models. We determine the global structural properties of our target star, as well as the abundances of the most significant pollutants in its atmosphere, i.e., H, O, Na, Mg, Si, Ca, and Fe. The relative abundances of these elements imply that the source of the accreted material has a composition similar to that of Bulk Earth. We also report the signature of a circumstellar disk revealed through a large infrared excess in JHK photometry. Combined with our inferred estimate of the mass of the accreted material, this strongly suggests that we are witnessing the remains of a tidally disrupted extrasolar body that was as large as Ceres.Comment: 7 pages in emulateapj, 5 figures, accepted for publication in Ap

    Detailed compositional analysis of the heavily polluted DBZ white dwarf SDSS J073842.56+183509.06: A window on planet formation?

    Full text link
    We present a new model atmosphere analysis of the most metal contaminated white dwarf known, the DBZ SDSS J073842.56+183509.06. Using new high resolution spectroscopic observations taken with Keck and Magellan, we determine precise atmospheric parameters and measure abundances of 14 elements heavier than helium. We also report new Spitzer mid-infrared photometric data that are used to better constrain the properties of the debris disk orbiting this star. Our detailed analysis, which combines data taken from 7 different observational facilities (GALEX, Gemini, Keck, Magellan, MMT, SDSS and Spitzer) clearly demonstrate that J0738+1835 is accreting large amounts of rocky terrestrial-like material that has been tidally disrupted into a debris disk. We estimate that the body responsible for the photospheric metal contamination was at least as large Ceres, but was much drier, with less than 1% of the mass contained in the form of water ice, indicating that it formed interior to the snow line around its parent star. We also find a correlation between the abundances (relative to Mg and bulk Earth) and the condensation temperature; refractory species are clearly depleted while the more volatile elements are possibly enhanced. This could be the signature of a body that formed in a lower temperature environment than where Earth formed. Alternatively, we could be witnessing the remains of a differentiated body that lost a large part of its outer layers.Comment: 16 pages, 17 figures, accepted for publication in The Astrophysical Journa

    Strengthening the Case for Asteroidal Accrection: Evidence for Subtle and Diverse Disks at White Dwarfs

    Full text link
    Spitzer Space Telescope IRAC 3-8 micron and AKARI IRC 2-4 micron photometry are reported for ten white dwarfs with photospheric heavy elements; nine relatively cool stars with photospheric calcium, and one hotter star with a peculiar high carbon abundance. A substantial infrared excess is detected at HE 2221-1630, while modest excess emissions are identified at HE 0106-3253 and HE 0307+0746, implying these latter two stars have relatively narrow (Delta r < 0.1 Rsol) rings of circumstellar dust. A likely 7.9 micron excess is found at PG 1225-079 and may represent, together with G166-58, a sub-class of dust ring with a large inner hole. The existence of attenuated disks at white dwarfs substantiates the connection between their photospheric heavy elements and the accretion of disrupted minor planets, indicating many polluted white dwarfs may harbor orbiting dust, even those lacking an obvious infrared excess.Comment: 13 pages, emulateapj, accepted to Ap

    Externally-polluted white dwarfs with dust disks

    Get PDF
    We report Spitzer Space Telescope photometry of eleven externally-polluted white dwarfs. Of the nine stars for which we have IRAC photometry, we find that GD 40, GD 133 and PG 1015+161 each has an infrared excess that can be understood as arising from a flat, opaque, dusty disk. GD 56 also has an infrared excess characteristic of circumstellar dust, but a flat-disk model cannot reproduce the data unless there are grains as warm as 1700 K and perhaps not even then. Our data support the previous suggestion that the metals in the atmosphere of GD 40 are the result of accretion of a tidally-disrupted asteroid with a chondritic composition.Comment: ApJ, in pres

    Help on Saws and Stoves

    Get PDF

    Infrared Signatures of Disrupted Minor Planets at White Dwarfs

    Full text link
    Spitzer Space Observatory IRAC and MIPS photometric observations are presented for 20 white dwarfs with T < 20,000 K and metal-contaminated photospheres. A warm circumstellar disk is detected at GD 16 and likely at PG 1457-086, while the remaining targets fail to reveal mid-infrared excess typical of dust disks, including a number of heavily polluted stars. Extending previous studies, over 50% of all single white dwarfs with implied metal accretion rates dM/dt > 3e8 g/s display a warm infrared excess from orbiting dust; the likely result of a tidally-destroyed minor planet. This benchmark accretion rate lies between the dust production rates of 1e6 g/s in the solar system zodiacal cloud and 1e10 g/s often inferred for debris disks at main sequence A-type stars. It is estimated that between 1% and 3% of all single white dwarfs with cooling ages less than around 0.5 Gyr possess circumstellar dust, signifying an underlying population of minor planets.Comment: 47 pages, accepted to Ap

    Spectral synthesis of circumstellar disks - application to white dwarf debris disks

    Full text link
    Gas and dust disks are common objects in the universe and can be found around various objects, e.g. young stars, cataclysmic variables, active galactic nuclei, or white dwarfs. The light that we receive from disks provides us with clues about their composition, temperature, and density. In order to better understand the physical and chemical dynamics of these disks, self-consistent radiative transfer simulations are inevitable. Therefore, we have developed a 1+1D radiative transfer code as an extension to the well-established model atmosphere code \verb!PHOENIX!. We will show the potential of the application of our code to model the spectra of white dwarf debris disks.Comment: 4 pages, 4 figures, to appear in: Proceedings of the 16th European Workshop on White Dwarf

    Sirius B Imaged in the Mid-Infrared: No Evidence for a Remnant Planetary System

    Full text link
    Evidence is building that remnants of solar systems might orbit a large percentage of white dwarfs, as the polluted atmospheres of DAZ and DBZ white dwarfs indicate the very recent accretion of metal-rich material. (Zuckerman et al. 2010). Some of these polluted white dwarfs are found to have large mid-infrared excesses from close-in debris disks that are thought to be reservoirs for the metal accretion. These systems are coined DAZd white dwarfs (von Hippel et al. 2007). Here we investigate the claims of Bonnet-Bidaud & Pantin (2008) that Sirius B, the nearest white dwarf to the Sun, might have an infrared excess from a dusty debris disk. Sirius B's companion, Sirius A is commonly observed as a mid-infrared photometric standard in the Southern hemisphere. We combine several years of Gemini/T-ReCS photometric standard observations to produce deep mid-infrared imaging in five ~10 micron filters (broad N + 4 narrowband), which reveal the presence of Sirius B. Our photometry is consistent with the expected photospheric emission such that we constrain any mid-infrared excess to <10% of the photosphere. Thus we conclude that Sirius B does not have a large dusty disk, as seen in DAZd white dwarfs.Comment: 13 pages, 3 figures, accepted to Ap
    • …
    corecore