Evidence is building that remnants of solar systems might orbit a large
percentage of white dwarfs, as the polluted atmospheres of DAZ and DBZ white
dwarfs indicate the very recent accretion of metal-rich material. (Zuckerman et
al. 2010). Some of these polluted white dwarfs are found to have large
mid-infrared excesses from close-in debris disks that are thought to be
reservoirs for the metal accretion. These systems are coined DAZd white dwarfs
(von Hippel et al. 2007). Here we investigate the claims of Bonnet-Bidaud &
Pantin (2008) that Sirius B, the nearest white dwarf to the Sun, might have an
infrared excess from a dusty debris disk. Sirius B's companion, Sirius A is
commonly observed as a mid-infrared photometric standard in the Southern
hemisphere. We combine several years of Gemini/T-ReCS photometric standard
observations to produce deep mid-infrared imaging in five ~10 micron filters
(broad N + 4 narrowband), which reveal the presence of Sirius B. Our photometry
is consistent with the expected photospheric emission such that we constrain
any mid-infrared excess to <10% of the photosphere. Thus we conclude that
Sirius B does not have a large dusty disk, as seen in DAZd white dwarfs.Comment: 13 pages, 3 figures, accepted to Ap