16 research outputs found

    Wearable Technologies for Pediatric Patients with Surgical Infections-More than Counting Steps?

    Get PDF
    Reliable vital sign assessments are crucial for the management of patients with infectious diseases. Wearable devices enable easy and comfortable continuous monitoring across settings, especially in pediatric patients, but information about their performance in acutely unwell children is scarce. Vital signs were continuously measured with a multi-sensor wearable device (Everion®, Biofourmis, Zurich, Switzerland) in 21 pediatric patients during their hospitalization for appendicitis, osteomyelitis, or septic arthritis to describe acceptance and feasibility and to compare validity and reliability with conventional measurements. Using a wearable device was highly accepted and feasible for health-care workers, parents, and children. There were substantial data gaps in continuous monitoring up to 24 h. The wearable device measured heart rate and oxygen saturation reliably (mean difference, 2.5 bpm and 0.4% SpO2) but underestimated body temperature by 1.7 °C. Data availability was suboptimal during the study period, but a good relationship was determined between wearable device and conventional measurements for heart rate and oxygen saturation. Acceptance and feasibility were high in all study groups. We recommend that wearable devices designed for medical use in children be validated in the targeted population to assure future high-quality continuous vital sign assessments in an easy and non-burdening way

    External validation of cerebral aneurysm rupture probability model with data from two patient cohorts

    No full text
    Background: For a treatment decision of unruptured cerebral aneurysms, physicians and patients need to weigh the risk of treatment against the risk of hemorrhagic stroke caused by aneurysm rupture. The aim of this study was to externally evaluate a recently developed statistical aneurysm rupture probability model, which could potentially support such treatment decisions. Methods: Segmented image data and patient information obtained from two patient cohorts including 203 patients with 249 aneurysms were used for patient-specific computational fluid dynamics simulations and subsequent evaluation of the statistical model in terms of accuracy, discrimination, and goodness of fit. The model’s performance was further compared to a similarity-based approach for rupture assessment by identifying aneurysms in the training cohort that were similar in terms of hemodynamics and shape compared to a given aneurysm from the external cohorts. Results: When applied to the external data, the model achieved a good discrimination and goodness of fit (area under the receiver operating characteristic curve AUC = 0.82), which was only slightly reduced compared to the optimism-corrected AUC in the training population (AUC = 0.84). The accuracy metrics indicated a small decrease in accuracy compared to the training data (misclassification error of 0.24 vs. 0.21). The model’s prediction accuracy was improved when combined with the similarity approach (misclassification error of 0.14). Conclusions: The model’s performance measures indicated a good generalizability for data acquired at different clinical institutions. Combining the model-based and similarity-based approach could further improve the assessment and interpretation of new cases, demonstrating its potential use for clinical risk assessment

    External validation of cerebral aneurysm rupture probability model with data from two patient cohorts

    No full text
    Background: For a treatment decision of unruptured cerebral aneurysms, physicians and patients need to weigh the risk of treatment against the risk of hemorrhagic stroke caused by aneurysm rupture. The aim of this study was to externally evaluate a recently developed statistical aneurysm rupture probability model, which could potentially support such treatment decisions. Methods: Segmented image data and patient information obtained from two patient cohorts including 203 patients with 249 aneurysms were used for patient-specific computational fluid dynamics simulations and subsequent evaluation of the statistical model in terms of accuracy, discrimination, and goodness of fit. The model’s performance was further compared to a similarity-based approach for rupture assessment by identifying aneurysms in the training cohort that were similar in terms of hemodynamics and shape compared to a given aneurysm from the external cohorts. Results: When applied to the external data, the model achieved a good discrimination and goodness of fit (area under the receiver operating characteristic curve AUC = 0.82), which was only slightly reduced compared to the optimism-corrected AUC in the training population (AUC = 0.84). The accuracy metrics indicated a small decrease in accuracy compared to the training data (misclassification error of 0.24 vs. 0.21). The model’s prediction accuracy was improved when combined with the similarity approach (misclassification error of 0.14). Conclusions: The model’s performance measures indicated a good generalizability for data acquired at different clinical institutions. Combining the model-based and similarity-based approach could further improve the assessment and interpretation of new cases, demonstrating its potential use for clinical risk assessment

    High-performance web services for querying gene and variant annotation.

    Get PDF
    Efficient tools for data management and integration are essential for many aspects of high-throughput biology. In particular, annotations of genes and human genetic variants are commonly used but highly fragmented across many resources. Here, we describe MyGene.info and MyVariant.info, high-performance web services for querying gene and variant annotation information. These web services are currently accessed more than three million times permonth. They also demonstrate a generalizable cloud-based model for organizing and querying biological annotation information. MyGene.info and MyVariant.info are provided as high-performance web services, accessible at http://mygene.info and http://myvariant.info . Both are offered free of charge to the research community

    Extending Statistical Learning for Aneurysm Rupture Assessment to Finnish and Japanese Populations Using Morphology, Hemodynamics, and Patient Characteristics

    No full text
    OBJECTIVE: Incidental aneurysms pose a challenge for physicians, who need to weigh the rupture risk against the risks associated with treatment and its complications. A statistical model could potentially support such treatment decisions. A recently developed aneurysm rupture probability model performed well in the US data used for model training and in data from two European cohorts for external validation. Because Japanese and Finnish patients are known to have a higher aneurysm rupture risk, the authors\u27 goals in the present study were to evaluate this model using data from Japanese and Finnish patients and to compare it with new models trained with Finnish and Japanese data. METHODS: Patient and image data on 2129 aneurysms in 1472 patients were used. Of these aneurysm cases, 1631 had been collected mainly from US hospitals, 249 from European (other than Finnish) hospitals, 147 from Japanese hospitals, and 102 from Finnish hospitals. Computational fluid dynamics simulations and shape analyses were conducted to quantitatively characterize each aneurysm\u27s shape and hemodynamics. Next, the previously developed model\u27s discrimination was evaluated using the Finnish and Japanese data in terms of the area under the receiver operating characteristic curve (AUC). Models with and without interaction terms between patient population and aneurysm characteristics were trained and evaluated including data from all four cohorts obtained by repeatedly randomly splitting the data into training and test data. RESULTS: The US model\u27s AUC was reduced to 0.70 and 0.72, respectively, in the Finnish and Japanese data compared to 0.82 and 0.86 in the European and US data. When training the model with Japanese and Finnish data, the average AUC increased only slightly for the Finnish sample (to 0.76 ± 0.16) and Finnish and Japanese cases combined (from 0.74 to 0.75 ± 0.14) and decreased for the Japanese data (to 0.66 ± 0.33). In models including interaction terms, the AUC in the Finnish and Japanese data combined increased significantly to 0.83 ± 0.10. CONCLUSIONS: Developing an aneurysm rupture prediction model that applies to Japanese and Finnish aneurysms requires including data from these two cohorts for model training, as well as interaction terms between patient population and the other variables in the model. When including this information, the performance of such a model with Japanese and Finnish data is close to its performance with US or European data. These results suggest that population-specific differences determine how hemodynamics and shape associate with rupture risk in intracranial aneurysms
    corecore