246 research outputs found
Recognition of delirium in ICU patients: a diagnostic study of the NEECHAM confusion scale in ICU patients
BACKGROUND: A delirium, is a serious, high-frequency complication in intensive care unit (ICU) patients. The consequences of this complication range from high morbidity and mortality to greater need for nursing care. Despite these, delirium is often not recognized and there for not treated. In this study a nursing screening instrument, the NEECHAM confusion scale, was studied for early recognition of delirium ICU patients. This scale proved valid and reliable in several studies in the general hospital population. METHODS: In this study validity and reliability were tested in a prospective cohort of 105 patients. Gold standard for delirium was an independent DSM-IV diagnosis. User friendliness was tested by structured evaluation of nurses' experiences working with the scale. RESULTS: The NEECHAM confusion scale showed high internal consistency (Cronbach's alpha 0.88) and an interrater reliability of Cohen's Kappa 0.60. The concurrent validity with the DSM-IVcriteria showed a strong link (chi-square 67.52, p [less than or equal to] 0.001). Sensitivity was high, 97% and specificity was good 83%. ICU nurses completed the NEECHAM confusion rating in 3.69, ± 1.21 minutes average. In general the nurses were positive about the NEECHAM confusion scale. They were able to collect data during regular care, but experienced problems in rating the scale in intubated patients. The items in themselves were clear, the content validity, measured by the language used was rated good. CONCLUSION: The psychometric characteristics of the NEECHAM confusion scale of this ICU study are generally consistent with validity research previously reported for the general hospital population. The psychometric characteristics and the ease of use of the NEECHAM confusion scale enables ICU nurses to early recognize delirium. Further study, especially in intubed patients is recommended
A randomized phase III study of carfilzomib vs low-dose corticosteroids with optional cyclophosphamide in relapsed and refractory multiple myeloma (FOCUS)
This randomized, phase III, open-label, multicenter study compared carfilzomib monotherapy against low-dose corticosteroids and optional cyclophosphamide in relapsed and refractory multiple myeloma (RRMM). Relapsed and refractory multiple myeloma patients were randomized (1:1) to receive carfilzomib (10-min intravenous infusion; 20 mg/m(2) on days 1 and 2 of cycle 1; 27 mg/m(2) thereafter) or a control regimen of low-dose corticosteroids (84 mg of dexamethasone or equivalent corticosteroid) with optional cyclophosphamide (1400 mg) for 28-day cycles. The primary endpoint was overall survival (OS). Three-hundred and fifteen patients were randomized to carfilzomib (n=157) or control (n=158). Both groups had a median of five prior regimens. In the control group, 95% of patients received cyclophosphamide. Median OS was 10.2 (95% confidence interval (CI) 8.4-14.4) vs 10.0 months (95% CI 7.7-12.0) with carfilzomib vs control (hazard ratio=0.975; 95% CI 0.760-1.249; P=0.4172). Progression-free survival was similar between groups; overall response rate was higher with carfilzomib (19.1 vs 11.4%). The most common grade ⩾3 adverse events were anemia (25.5 vs 30.7%), thrombocytopenia (24.2 vs 22.2%) and neutropenia (7.6 vs 12.4%) with carfilzomib vs control. Median OS for single-agent carfilzomib was similar to that for an active doublet control regimen in heavily pretreated RRMM patients
Recommended from our members
Neoproterozoic iron formation: An evaluation of its temporal, environmental and tectonic significance
Neoproterozoic iron formation (NIF) provides evidence for the widespread return of anoxic and ferruginous basins during a time period associated with major changes in climate, tectonics and biogeochemistry of the oceans. Here we summarize the stratigraphic context of Neoproterozoic iron formation and its geographic and temporal distribution. It is evident that most NIF is associated with the earlier Cryogenian (Sturtian) glacial epoch. Although it is possible that some NIF may be Ediacaran, there is no incontrovertible evidence to support this age assignment. The paleogeographic distribution of NIF is consistent with anoxic and ferruginous conditions occurring in basins within Rodinia or in rift-basins developed on its margins. Consequently NIF does not require whole ocean anoxia. Simple calculations using modern day iron fluxes suggest that only models that invoke hydrothermal and/or detrital sources of iron are capable of supplying sufficient iron to account for the mass of the larger NIF occurrences. This conclusion is reinforced by the available geochemical data that imply NIF record is a mixture of hydrothermal and detrital components. A common thread that appears to link most if not all NIF is an association with mafic volcanics.Earth and Planetary Science
Quantitative Evaluation of Scintillation Camera Imaging Characteristics of Isotopes Used in Liver Radioembolization
Scintillation camera imaging is used for treatment planning and post-treatment dosimetry in liver radioembolization (RE). In yttrium-90 (90Y) RE, scintigraphic images of technetium-99m (99mTc) are used for treatment planning, while 90Y Bremsstrahlung images are used for post-treatment dosimetry. In holmium-166 (166Ho) RE, scintigraphic images of 166Ho can be used for both treatment planning and post-treatment dosimetry. The aim of this study is to quantitatively evaluate and compare the imaging characteristics of these three isotopes, in order that imaging protocols can be optimized and RE studies with varying isotopes can be compared.Phantom experiments were performed in line with NEMA guidelines to assess the spatial resolution, sensitivity, count rate linearity, and contrast recovery of 99mTc, 90Y and 166Ho. In addition, Monte Carlo simulations were performed to obtain detailed information about the history of detected photons. The results showed that the use of a broad energy window and the high-energy collimator gave optimal combination of sensitivity, spatial resolution, and primary photon fraction for 90Y Bremsstrahlung imaging, although differences with the medium-energy collimator were small. For 166Ho, the high-energy collimator also slightly outperformed the medium-energy collimator. In comparison with 99mTc, the image quality of both 90Y and 166Ho is degraded by a lower spatial resolution, a lower sensitivity, and larger scatter and collimator penetration fractions.The quantitative evaluation of the scintillation camera characteristics presented in this study helps to optimize acquisition parameters and supports future analysis of clinical comparisons between RE studies
Personalised progression prediction in patients with monoclonal gammopathy of undetermined significance or smouldering multiple myeloma (PANGEA): a retrospective, multicohort study
BACKGROUND: Patients with precursors to multiple myeloma are dichotomised as having monoclonal gammopathy of undetermined significance or smouldering multiple myeloma on the basis of monoclonal protein concentrations or bone marrow plasma cell percentage. Current risk stratifications use laboratory measurements at diagnosis and do not incorporate time-varying biomarkers. Our goal was to develop a monoclonal gammopathy of undetermined significance and smouldering multiple myeloma stratification algorithm that utilised accessible, time-varying biomarkers to model risk of progression to multiple myeloma. METHODS: In this retrospective, multicohort study, we included patients who were 18 years or older with monoclonal gammopathy of undetermined significance or smouldering multiple myeloma. We evaluated several modelling approaches for predicting disease progression to multiple myeloma using a training cohort (with patients at Dana-Farber Cancer Institute, Boston, MA, USA; annotated from Nov, 13, 2019, to April, 13, 2022). We created the PANGEA models, which used data on biomarkers (monoclonal protein concentration, free light chain ratio, age, creatinine concentration, and bone marrow plasma cell percentage) and haemoglobin trajectories from medical records to predict progression from precursor disease to multiple myeloma. The models were validated in two independent validation cohorts from National and Kapodistrian University of Athens (Athens, Greece; from Jan 26, 2020, to Feb 7, 2022; validation cohort 1), University College London (London, UK; from June 9, 2020, to April 10, 2022; validation cohort 1), and Registry of Monoclonal Gammopathies (Czech Republic, Czech Republic; Jan 5, 2004, to March 10, 2022; validation cohort 2). We compared the PANGEA models (with bone marrow [BM] data and without bone marrow [no BM] data) to current criteria (International Myeloma Working Group [IMWG] monoclonal gammopathy of undetermined significance and 20/2/20 smouldering multiple myeloma risk criteria). FINDINGS: We included 6441 patients, 4931 (77%) with monoclonal gammopathy of undetermined significance and 1510 (23%) with smouldering multiple myeloma. 3430 (53%) of 6441 participants were female. The PANGEA model (BM) improved prediction of progression from smouldering multiple myeloma to multiple myeloma compared with the 20/2/20 model, with a C-statistic increase from 0·533 (0·480-0·709) to 0·756 (0·629-0·785) at patient visit 1 to the clinic, 0·613 (0·504-0·704) to 0·720 (0·592-0·775) at visit 2, and 0·637 (0·386-0·841) to 0·756 (0·547-0·830) at visit three in validation cohort 1. The PANGEA model (no BM) improved prediction of smouldering multiple myeloma progression to multiple myeloma compared with the 20/2/20 model with a C-statistic increase from 0·534 (0·501-0·672) to 0·692 (0·614-0·736) at visit 1, 0·573 (0·518-0·647) to 0·693 (0·605-0·734) at visit 2, and 0·560 (0·497-0·645) to 0·692 (0·570-0·708) at visit 3 in validation cohort 1. The PANGEA models improved prediction of monoclonal gammopathy of undetermined significance progression to multiple myeloma compared with the IMWG rolling model at visit 1 in validation cohort 2, with C-statistics increases from 0·640 (0·518-0·718) to 0·729 (0·643-0·941) for the PANGEA model (BM) and 0·670 (0·523-0·729) to 0·879 (0·586-0·938) for the PANGEA model (no BM). INTERPRETATION: Use of the PANGEA models in clinical practice will allow patients with precursor disease to receive more accurate measures of their risk of progression to multiple myeloma, thus prompting for more appropriate treatment strategies. FUNDING: SU2C Dream Team and Cancer Research UK
Mantle Pb paradoxes : the sulfide solution
Author Posting. © Springer, 2006. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Contributions to Mineralogy and Petrology 152 (2006): 295-308, doi:10.1007/s00410-006-0108-1.There is growing evidence that the budget of Pb in mantle peridotites is largely
contained in sulfide, and that Pb partitions strongly into sulfide relative to silicate melt. In
addition, there is evidence to suggest that diffusion rates of Pb in sulfide (solid or melt)
are very fast. Given the possibility that sulfide melt ‘wets’ sub-solidus mantle silicates,
and has very low viscosity, the implications for Pb behavior during mantle melting are
profound. There is only sparse experimental data relating to Pb partitioning between
sulfide and silicate, and no data on Pb diffusion rates in sulfides. A full understanding of
Pb behavior in sulfide may hold the key to several long-standing and important Pb
paradoxes and enigmas. The classical Pb isotope paradox arises from the fact that all
known mantle reservoirs lie to the right of the Geochron, with no consensus as to the
identity of the “balancing” reservoir. We propose that long-term segregation of sulfide
(containing Pb) to the core may resolve this paradox. Another Pb paradox arises from the fact that the Ce/Pb ratio of both OIB and MORB
is greater than bulk earth, and constant at a value of 25. The constancy of this “canonical
ratio” implies similar partition coefficients for Ce and Pb during magmatic processes
(Hofmann et al. 1986), whereas most experimental studies show that Pb is more
incompatible in silicates than Ce. Retention of Pb in residual mantle sulfide during
melting has the potential to bring the bulk partitioning of Ce into equality with Pb if the
sulfide melt/silicate melt partition coefficient for Pb has a value of ~ 14. Modeling shows
that the Ce/Pb (or Nd/Pb) of such melts will still accurately reflect that of the source, thus
enforcing the paradox that OIB and MORB mantles have markedly higher Ce/Pb (and
Nd/Pb) than the bulk silicate earth. This implies large deficiencies of Pb in the mantle
sources for these basalts. Sulfide may play other important roles during magmagenesis:
1). advective/diffusive sulfide networks may form potent metasomatic agents (in both
introducing and obliterating Pb isotopic heterogeneities in the mantle); 2). silicate melt
networks may easily exchange Pb with ambient mantle sulfides (by diffusion or
assimilation), thus ‘sampling’ Pb in isotopically heterogeneous mantle domains
differently from the silicate-controlled isotope tracer systems (Sr, Nd, Hf), with an
apparent ‘de-coupling’ of these systems.Our intemperance
should not be blamed on the support we gratefully acknowledge from NSF: EAR-
0125917 to SRH and OCE-0118198 to GAG
- …