61 research outputs found

    Deletion of Porcn in Mice Leads to Multiple Developmental Defects and Models Human Focal Dermal Hypoplasia (Goltz Syndrome)

    Get PDF
    Focal Dermal Hypoplasia (FDH) is a genetic disorder characterized by developmental defects in skin, skeleton and ectodermal appendages. FDH is caused by dominant loss-of-function mutations in X-linked PORCN. PORCN orthologues in Drosophila and mice encode endoplasmic reticulum proteins required for secretion and function of Wnt proteins. Wnt proteins play important roles in embryo development, tissue homeostasis and stem cell maintenance. Since features of FDH overlap with those seen in mouse Wnt pathway mutants, FDH likely results from defective Wnt signaling but molecular mechanisms by which inactivation of PORCN affects Wnt signaling and manifestations of FDH remain to be elucidated.We introduced intronic loxP sites and a neomycin gene in the mouse Porcn locus for conditional inactivation. Porcn-ex3-7flox mice have no apparent developmental defects, but chimeric mice retaining the neomycin gene (Porcn-ex3-7Neo-flox) have limb, skin, and urogenital abnormalities. Conditional Porcn inactivation by EIIa-driven or Hprt-driven Cre recombinase results in increased early embryonic lethality. Mesenchyme-specific Prx-Cre-driven inactivation of Porcn produces FDH-like limb defects, while ectodermal Krt14-Cre-driven inactivation produces thin skin, alopecia, and abnormal dentition. Furthermore, cell-based assays confirm that human PORCN mutations reduce WNT3A secretion.These data indicate that Porcn inactivation in the mouse produces a model for human FDH and that phenotypic features result from defective WNT signaling in ectodermal- and mesenchymal-derived structures

    Reconstructing North-West African palaeoclimate from speleothem geochemistry: past climate variability and implications for human history

    No full text
    Climate north of the Atlas Mountain belt in NW Africa is dominated by extratropical disturbances. However, climatic controls to the south, where climate transitions from extratropical to tropical regimes, are poorly understood due to a paucity of both instrumental and palaeoclimate data. In this thesis past climate change between the High Atlas Mountains and Sahara Desert is reconstructed using the stable isotopic composition and radiometric dating of speleothems. A high-resolution record from the mid-Holocene and a discontinuous record covering the past 400,000 years are developed. Supplemented by U-Th dating of a further four samples, these records indicate increased humidity in this area concomitant with the wider African Humid Period, and indicate a link between the West African Monsoon and humidity north of 30°N. Reconstructed glacial-interglacial scale increases in humidity overlap with "green Sahara" conditions and evidence a recurrent humid corridor connecting NW Africa and the central Sahara that is highly relevant to discussions of prehistoric human migrations. Evidence for a strong influence of high-latitude and solar forcing on decadal to millennial time- scales in this area is also presented. Further to this work, the potential of cadmium-to-calcite ratios as a novel proxy for palaeo-hydrology is confirmed using an annually-resolved trace element, stable isotope and calcite fabric dataset from a North Moroccan stalagmite. The first measurements of cadmium-to-calcite ratios in natural speleothem are here presented, and the palaeoclimatic significance and potential of this proxy for aiding the quantitative reconstruction of changes in calcite precipitation behaviour are demonstrated.</p

    The Yorkshire and Humber Clinical Skills Network

    No full text
    Networks are the future of innovating and sharing best practices in simulation. We take a look at the Yorkshire and Humber Clinical Skills Network

    Formulation, Characterization, and In Vitro/In Vivo Efficacy Studies of a Novel Liposomal Drug Delivery System of Amphiphilic Jaspine B for Treatment of Synovial Sarcoma

    No full text
    Sphingomyelin is a cell membrane sphingolipid that is upregulated in synovial sarcoma (SS). Jaspine B has been shown to inhibit sphingomyelin synthase, which synthesizes sphingomyelin from ceramide, a critical signal transducer; however, jaspine B&rsquo;s low bioavailability limits its application as a promising treatment option. To address this shortcoming, we used microfluidics to develop a liposomal delivery system with increased anticancer efficacy. The nano-liposome size was determined by transmission electron microscopy. The jaspine B liposome was tested for its tumor inhibitory efficacy compared to plain jaspine B in in vitro and in vivo studies. The human SS cell line was tested for cell viability using varying jaspine B concentrations. In a mouse model of SS, tumor growth suppression was evaluated during four weeks of treatment (3 times/week). The results show that jaspine B was successfully formulated in the liposomes with a size ranging from 127.5 &plusmn; 61.2 nm. The MTT assay and animal study results indicate that jaspine B liposomes dose-dependently lowers cell viability in the SS cell line and effectively suppresses tumor cell growth in the SS animal model. The novel liposome drug delivery system addresses jaspine B&rsquo;s low bioavailability issues and improves its therapeutic efficacy

    Natural Products and Small Molecules Targeting Cellular Ceramide Metabolism to Enhance Apoptosis in Cancer Cells

    No full text
    Molecular targeting strategies have been used for years in order to control cancer progression and are often based on targeting various enzymes involved in metabolic pathways. Keeping this in mind, it is essential to determine the role of each enzyme in a particular metabolic pathway. In this review, we provide in-depth information on various enzymes such as ceramidase, sphingosine kinase, sphingomyelin synthase, dihydroceramide desaturase, and ceramide synthase which are associated with various types of cancers. We also discuss the physicochemical properties of well-studied inhibitors with natural product origins and their related structures in terms of these enzymes. Targeting ceramide metabolism exhibited promising mono- and combination therapies at preclinical stages in preventing cancer progression and cemented the significance of sphingolipid metabolism in cancer treatments. Targeting ceramide-metabolizing enzymes will help medicinal chemists design potent and selective small molecules for treating cancer progression at various levels
    corecore