675 research outputs found

    Lightning and convection parameterisations ? uncertainties in global modelling

    Get PDF
    International audienceThe simulation of convection, lightning and consequent NOx emissions with global atmospheric chemistry models is associated with large uncertainties since these processes are heavily parameterised. Each parameterisation by itself has deficiencies and the combination of these substantially increases the uncertainties compared to the individual parameterisations. In this study several combinations of state-of-the-art convection and lightning parameterisations are used in simulations with the global atmospheric chemistry general circulation model ECHAM5/MESSy, and are evaluated against lightning observations. A wide range in the spatial and temporal variability of the simulated flash densities is found, attributed to both types of parameterisations. Some combinations perform well, whereas others are hardly applicable. In addition to resolution dependent rescaling parameters, each combination of lightning and convection schemes requires individual scaling to reproduce the observed flash frequencies. The resulting NOx profiles are inter-compared, however definite conclusions about the most realistic profiles can currently not be drawn

    Technical Note: The Modular Earth Submodel System (MESSy) ? a new approach towards Earth System Modeling

    No full text
    International audienceGenerally, the typical approach towards Earth System Modeling has been to couple existing models of different domains (land, ocean, atmosphere, ...) offline, using output files of one model to provide input for the other. However, for a detailed study of the interactions and feedbacks between chemical, physical, and biological processes, it is necessary to perform the coupling online. One strategy is to link the existing domain-specific models with a universal coupler. In many cases, however, a much simpler approach is more feasible. To achieve the online coupling, we have developed the Modular Earth Submodel System (MESSy). Data are exchanged between a and several within one comprehensive model system. MESSy includes a generalized interface structure for the standardized control of the and their interconnections. The internal complexity of the is controllable in a transparent and user friendly way. This provides remarkable new possibilities to study feedback mechanisms (by two-way coupling), e.g., by applying MESSy to a general circulation model (GCM)

    The influence of the vertical distribution of emissions on tropospheric chemistry

    Get PDF
    The atmospheric chemistry general circulation model EMAC (ECHAM5/MESSy atmospheric chemistry) is used to investigate the effect of height dependent emissions on tropospheric chemistry. In a sensitivity simulation, anthropogenic and biomass burning emissions are released in the lowest model layer. The resulting tracer distributions are compared to those of a former simulation applying height dependent emissions. Although the differences between the two simulations in the free troposphere are small (less than 5%), large differences are present in polluted regions at the surface, in particular for NO<sub>x</sub> (more than 100%), CO (up to 30%) and non-methane hydrocarbons (up to 30%), whereas for OH the differences at the same locations are somewhat lower (15%). Global ozone formation is virtually unaffected by the choice of the vertical distribution of emissions. Nevertheless, local ozone changes can be up to 30%. Model results of both simulations are further compared to observations from field campaigns and to data from measurement stations

    Technical note: The new comprehensive atmospheric chemistry module MECCA

    Get PDF
    In this technical note we present the multi-purpose atmospheric chemistry model MECCA. Owing to its versatility and modular structure, it can be used for tropospheric as well as stratospheric chemistry calculations. Extending the code to other domains (e.g. mesospheric or oceanic chemistry) is easily possible. MECCA contains a comprehensive atmospheric reaction mechanism that currently includes: 1) the basic O<sub>3</sub>, CH<sub>4</sub>, HO<sub>x</sub>, and NO<sub>x</sub> chemistry, 2) non-methane hydrocarbon (NMHC) chemistry, 3) halogen (Cl, Br, I) chemistry, and 4) sulfur chemistry. Not only gas-phase chemistry but also aqueous-phase and heterogeneous reactions are considered. Arbitrary subsets of the comprehensive mechanism can be selected according to the research objectives. The program code resulting from the chemical mechanism can easily be used in any model, from a simple box model to a comprehensive global general circulation model

    Technical Note: The new comprehensive atmospheric chemistry module MECCA

    No full text
    International audienceIn this technical note we present the multi-purpose atmospheric chemistry model MECCA. Owing to its versatility and modular structure, it can be used for tropospheric as well as stratospheric chemistry calculations. Extending the code to other domains (e.g. mesospheric or oceanic chemistry) is easily possible. MECCA contains a comprehensive atmospheric reaction mechanism that currently includes: 1) the basic O3, CH4, HOx, and NOx, chemistry, 2) non-methane hydrocarbon (NMHC) chemistry, 3) halogen (Cl, Br, I) chemistry, and 4) sulfur chemistry. Not only gas-phase chemistry but also aqueous-phase and heterogeneous reactions are considered. Arbitrary subsets of the comprehensive mechanism can be selected according to the research objectives. The program code resulting from the chemical mechanism can easily be used in any kind of model, from a simple box model to a sophisticated global general circulation model

    Simple atomic quantum memory suitable for semiconductor quantum dot single photons

    Get PDF
    Quantum memories matched to single photon sources will form an important cornerstone of future quantum network technology. We demonstrate such a memory in warm Rb vapor with on-demand storage and retrieval, based on electromagnetically induced transparency. With an acceptance bandwidth of δf\delta f = 0.66~GHz the memory is suitable for single photons emitted by semiconductor quantum dots. In this regime, vapor cell memories offer an excellent compromise between storage efficiency, storage time, noise level, and experimental complexity, and atomic collisions have negligible influence on the optical coherences. Operation of the memory is demonstrated using attenuated laser pulses on the single photon level. For 50 ns storage time we measure ηe2e50ns=3.4(3)%\eta_{\textrm{e2e}}^{\textrm{50ns}} = 3.4(3)\% \emph{end-to-end efficiency} of the fiber-coupled memory, with an \emph{total intrinsic efficiency} ηint=17(3)%\eta_{\textrm{int}} = 17(3)\%. Straightforward technological improvements can boost the end-to-end-efficiency to ηe2e35%\eta_{\textrm{e2e}} \approx 35\%; beyond that increasing the optical depth and exploiting the Zeeman substructure of the atoms will allow such a memory to approach near unity efficiency. In the present memory, the unconditional readout noise level of 91039\cdot 10^{-3} photons is dominated by atomic fluorescence, and for input pulses containing on average μ1=0.27(4)\mu_{1}=0.27(4) photons the signal to noise level would be unity

    Will climate change increase ozone depletion from low-energy-electron precipitation?

    Get PDF
    We investigate the effects of a strengthened stratospheric/mesospheric residual circulation on the transport of nitric oxide (NO) produced by energetic particle precipitation. During periods of high geomagnetic activity, energetic electron precipitation (EEP) is responsible for winter time ozone loss in the polar middle atmosphere between 1 and 6 hPa. However, as climate change is expected to increase the strength of the Brewer-Dobson circulation including extratropical downwelling, the enhancements of EEP NO&lt;sub&gt;x&lt;/sub&gt; concentrations are expected to be transported to lower altitudes in extratropical regions, becoming more significant in the ozone budget. Changes in the mesospheric residual circulation are also considered. We use simulations with the chemistry climate model system EMAC to compare present day effects of EEP NO&lt;sub&gt;x&lt;/sub&gt; with expected effects in a climate change scenario for the year 2100. In years of strong geomagnetic activity, similar to that observed in 2003, an additional polar ozone loss of up to 0.4 μmol/mol at 5 hPa is found in the Southern Hemisphere. However, this would be approximately compensated by an ozone enhancement originating from a stronger poleward transport of ozone from lower latitudes caused by a strengthened Brewer-Dobson circulation, as well as by slower photochemical ozone loss reactions in a stratosphere cooled by risen greenhouse gas concentrations. In the Northern Hemisphere the EEP NO&lt;sub&gt;x&lt;/sub&gt; effect appears to lose importance due to the different nature of the climate-change induced circulation changes

    Vom "Wunder von Bern" zum "Sommermärchen" :Fußball-Weltmeisterschaften und die deutsche Nation

    Full text link
    Im Mittelpunkt dieser Dissertation steht die Frage nach den Einflüssen der Fußball-Weltmeisterschaften 1954, 1990 und 2006 auf die Entwicklung Deutschlands als Nation. Untersucht werden sowohl die unmittelbaren als auch die langfristigen Auswirkungen der Großereignisse auf das nationale Selbstverständnis der Deutschen, aber auch auf die internationale Wahrnehmung des Landes. Während sich die von der deutschen Nationalmannschaft gewonnenen Weltmeisterschaften 1954 und 1990 neben dem sportlichen Erfolg durch ihre besondere zeitliche Stellung im Umfeld bedeutender weltpolitischer Transformationsprozesse als Analyseobjekte auszeichnen, rückt bei der WM 2006 vor allem ein neues Deutschlandbild in den Fokus. Diese Untersuchung der nationalen Identitätsbildung von der Nachkriegszeit bis 2014 basiert auf politikethnologischen sowie nations- und ritualtheoretischen Ansätzen. Sie versteht sich als historische binnenkulturelle Analyse, in der die Dreiecksbeziehung zwischen Fußball, Politik und Identität grundlegend ist.<br

    Technical Note: The MESSy-submodel AIRSEA calculating the air-sea exchange of chemical species

    Get PDF
    The new submodel AIRSEA for the Modular Earth Submodel System (MESSy) is presented. It calculates the exchange of chemical species between the ocean and the atmosphere with a focus on organic compounds. The submodel can be easily extended to a large number of tracers, including highly soluble ones. It is demonstrated that the application of explicitly calculated air-sea exchanges with AIRSEA can induce substantial changes in the simulated tracer distributions in the troposphere in comparison to a model setup in which this process is neglected. For example, the simulations of acetone, constrained with measured oceanic concentrations, shows relative changes in the atmospheric surface layer mixing ratios over the Atlantic Ocean of up to 300%

    Technical Note: Simulation of detailed aerosol chemistry on the global scale using MECCA-AERO

    No full text
    International audienceWe present the MESSy submodel MECCA-AERO, which simulates both aerosol and gas phase chemistry within one comprehensive mechanism. Including the aerosol phase into the chemistry mechanism increases the stiffness of the resulting set of differential equations. The numerical aspects of the approach followed in MECCA-AERO are presented. MECCA-AERO requires input of an aerosol dynamical/microphysical model to provide the aerosol size and particle number information of the modes/bins for which the chemistry is explicitly calculated. Additional precautions are required to avoid the double counting of processes, especially for sulphate in the aerosol dynamical and the chemistry model. This coupling is explained in detail. To illustrate the capabilities of the new aerosol submodel, examples for species usually treated in aerosol dynamical models are shown. The aerosol chemistry as provided by MECCA-AERO is very sumptuous and not readily applicable for long-term simulations, though it provides a reference to evaluate simplified approaches
    corecore