101 research outputs found

    Point-of-care test for cervical cancer in LMICs

    Get PDF
    Cervical cancer screening using Papanicolaou's smear test has been highly effective in reducing death from this disease. However, this test is unaffordable in low- and middle-income countries, and its complexity has limited wide-scale uptake. Alternative tests, such as visual inspection with acetic acid or Lugol's iodine and human papillomavirus DNA, are sub-optimal in terms of specificity and sensitivity, thus sensitive and affordable tests with high specificity for on-site reporting are needed. Using proteomics and bioinformatics, we have identified valosin-containing protein (VCP) as differentially expressed between normal specimens and those with cervical intra-epithelial neoplasia grade 2/3 (CIN2/CIN3+) or worse. VCP-specific immunohistochemical staining (validated by a point-of-care technology) provided sensitive (93%) and specific (88%) identification of CIN2/CIN3+ and may serve as a critical biomarker for cervical-cancer screening. Future efforts will focus on further refinements to enhance analytic sensitivity and specificity of our proposed test, as well as on prototype development

    Laser Shock Tuning Dynamic Interlayer Coupling in Graphene–Boron Nitride Moiré Superlattices

    Get PDF
    In the emergence of graphene and many two-dimensional (2D) materials, the most exciting applications come from stacking them into 3D devices, promising many excellent possibilities for neoteric electronics and optoelectronics. Layers of semiconductors, insulators, and conductors can be stacked to form van der Waals heterostructures, after the weak bonds formed between the layers. However, the interlayer coupling in these heterostructures is usually hard to modulate, resulting in difficulty to realize their emerging optical or electronic properties. Especially, the relationship between interlayer distance and interlayer coupling remains to be investigated, due to the lack of effective technology. In this work, we have used laser shocking to controllably tune the interlayer distance between graphene (Gr) and boron nitride (BN) in the Gr/BN/Gr heterostructures and the strains in the 2D heterolayers, providing a simple and effective way to modify their optic and electronic properties. After lase shocking, the reduction of interlayer distance is calculated by molecular dynamics (MD) simulation. Some atoms in Gr or BN are out-of-plane as well. In Raman measurements, the G peak in the heterostructure shows a red-shifted trend after laser shocking, indicating the strong phonon coupling in the interlayer. Moreover, the larger transparency after laser shocking also verifies the stronger photon coupling in the heterostructure. To investigate the effects of the interlayer coupling of heterostructure on its out-of-plane electronic behavior, we have investigated the electronic tunneling behavior. The heterostructure after laser shock reveals a lager tunneling current and lower tunneling threshold, proving an unexpected better electrical property. From DFT calculations, laser shocking can modulate the band gap structure of graphene in Gr/BN/Gr heterostructures; therefore, the heterostructures can be implemented as a unique photonic platform to modulate the emission characters of the anchored CdSe/ZnS core–shell quantum dots. Remarkably, the effective laser shocking method is also applicable to various otherwise noninteracting 2D materials, resulting in many new phenomena, which will lead science and technology to unexplored territories

    Evaluation of regression models in metabolic physiology: predicting fluxes from isotopic data without knowledge of the pathway

    Get PDF
    This study explores the ability of regression models, with no knowledge of the underlying physiology, to estimate physiological parameters relevant for metabolism and endocrinology. Four regression models were compared: multiple linear regression (MLR), principal component regression (PCR), partial least-squares regression (PLS) and regression using artificial neural networks (ANN). The pathway of mammalian gluconeogenesis was analyzed using [U−(13)C]glucose as tracer. A set of data was simulated by randomly selecting physiologically appropriate metabolic fluxes for the 9 steps of this pathway as independent variables. The isotope labeling patterns of key intermediates in the pathway were then calculated for each set of fluxes, yielding 29 dependent variables. Two thousand sets were created, allowing independent training and test data. Regression models were asked to predict the nine fluxes, given only the 29 isotopomers. For large training sets (>50) the artificial neural network model was superior, capturing 95% of the variability in the gluconeogenic flux, whereas the three linear models captured only 75%. This reflects the ability of neural networks to capture the inherent non-linearities of the metabolic system. The effect of error in the variables and the addition of random variables to the data set was considered. Model sensitivities were used to find the isotopomers that most influenced the predicted flux values. These studies provide the first test of multivariate regression models for the analysis of isotopomer flux data. They provide insight for metabolomics and the future of isotopic tracers in metabolic research where the underlying physiology is complex or unknown

    Single Molecule In Vivo Analysis of Toll-Like Receptor 9 and CpG DNA Interaction

    Get PDF
    Toll-like receptor 9 (TLR9) activates the innate immune system in response to oligonucleotides rich in CpG whereas DNA lacking CpG could inhibit its activation. However, the mechanism of how TLR9 interacts with nucleic acid and becomes activated in live cells is not well understood. Here, we report on the successful implementation of single molecule tools, constituting fluorescence correlation/cross-correlation spectroscopy (FCS and FCCS) and photon count histogram (PCH) with fluorescence lifetime imaging (FLIM) to study the interaction of TLR9-GFP with Cy5 labeled oligonucleotide containing CpG or lacking CpG in live HEK 293 cells. Our findings show that i) TLR9 predominantly forms homodimers (80%) before binding to a ligand and further addition of CpG or non CpG DNA does not necessarily increase the proportion of TLR9 dimers, ii) CpG DNA has a lower dissociation constant (62 nM±9 nM) compared to non CpG DNA (153 nM±26 nM) upon binding to TLR9, suggesting that a motif specific binding affinity of TLR9 could be an important factor in instituting a conformational change-dependant activation, and iii) both CpG and non CpG DNA binds to TLR9 with a 1∶2 stoichiometry in vivo. Collectively, through our findings we establish an in vivo model of TLR9 binding and activation by CpG DNA using single molecule fluorescence techniques for single cell studies

    A study of alterations in DNA epigenetic modifications (5mC and 5hmC) and gene expression influenced by simulated microgravity in human lymphoblastoid cells

    Get PDF
    Cells alter their gene expression in response to exposure to various environmental changes. Epigenetic mechanisms such as DNA methylation are believed to regulate the alterations in gene expression patterns. In vitro and in vivo studies have documented changes in cellular proliferation, cytoskeletal remodeling, signal transduction, bone mineralization and immune deficiency under the influence of microgravity conditions experienced in space. However microgravity induced changes in the epigenome have not been well characterized. In this study we have used Next-generation Sequencing (NGS) to profile ground-based “simulated” microgravity induced changes on DNA methylation (5-methylcytosine or 5mC), hydroxymethylation (5-hydroxymethylcytosine or 5hmC), and simultaneous gene expression in cultured human lymphoblastoid cells. Our results indicate that simulated microgravity induced alterations in the methylome (~60% of the differentially methylated regions or DMRs are hypomethylated and ~92% of the differentially hydroxymethylated regions or DHMRs are hyperhydroxymethylated). Simulated microgravity also induced differential expression in 370 transcripts that were associated with crucial biological processes such as oxidative stress response, carbohydrate metabolism and regulation of transcription. While we were not able to obtain any global trend correlating the changes of methylation/ hydroxylation with gene expression, we have been able to profile the simulated microgravity induced changes of 5mC over some of the differentially expressed genes that includes five genes undergoing differential methylation over their promoters and twenty five genes undergoing differential methylation over their gene-bodies. To the best of our knowledge, this is the first NGS-based study to profile epigenomic patterns induced by short time exposure of simulated microgravity and we believe that our findings can be a valuable resource for future explorations

    Analysis of Resistant Starches in Rat Cecal Contents Using Fourier Transform Infrared Photoacoustic Spectroscopy

    Get PDF
    Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS) qualitatively and quantitatively measured resistant starch (RS) in rat cecal contents. Fisher 344 rats were fed diets of 55% (w/w, dry basis) starch for 8 weeks. Cecal contents were collected from sacrificed rats. A corn starch control was compared against three RS diets. The RS diets were high-amylose corn starch (HA7), HA7 chemically modified with octenyl succinic anhydride, and stearic-acid-complexed HA7 starch. To calibrate the FTIR-PAS analysis, samples from each diet were analyzed using an enzymatic assay. A partial least-squares cross-validation plot generated from the enzymatic assay and FTIR-PAS spectral results for starch fit the ideal curve with a R2 of 0.997. A principal component analysis plot of components 1 and 2 showed that spectra from diets clustered significantly from each other. This study clearly showed that FTIR-PAS can accurately quantify starch content and identify the form of starch in complex matrices.Reprinted with permission from Journal of Agricultural and Food Chemistry 61 (2013): 1818–1822, doi:10.1021/jf3042616. Copyright 2013 American Chemical Society.</p

    Simultaneous Determination of Multiple Components in Nisin Fermentation Using FTIR Spectroscopy

    Full text link
    Rosana G. Moreira, Editor-in-Chief; Texas A&M UniversityThis is a paper from International Commission of Agricultural Engineering (CIGR, Commission Internationale du Genie Rural) E-Journal Volume 6 (2004): S. Sakhamuri, J. Bober, J. Irudayaraj and A. Demirci. Simultaneous Determination of Multiple Components in Nisin Fermentation Using FTIR Spectroscopy. (March 2004
    corecore