132 research outputs found

    Sensitivity of a tonne-scale NEXT detector for neutrinoless double beta decay searches

    Full text link
    The Neutrino Experiment with a Xenon TPC (NEXT) searches for the neutrinoless double-beta decay of Xe-136 using high-pressure xenon gas TPCs with electroluminescent amplification. A scaled-up version of this technology with about 1 tonne of enriched xenon could reach in less than 5 years of operation a sensitivity to the half-life of neutrinoless double-beta decay decay better than 1E27 years, improving the current limits by at least one order of magnitude. This prediction is based on a well-understood background model dominated by radiogenic sources. The detector concept presented here represents a first step on a compelling path towards sensitivity to the parameter space defined by the inverted ordering of neutrino masses, and beyond.Comment: 22 pages, 11 figure

    Low-diffusion Xe-He gas mixtures for rare-event detection: electroluminescence yield

    Get PDF
    High pressure xenon Time Projection Chambers (TPC) based on secondary scintillation (electroluminescence) signal amplification are being proposed for rare event detection such as directional dark matter, double electron capture and double beta decay detection. The discrimination of the rare event through the topological signature of primary ionisation trails is a major asset for this type of TPC when compared to single liquid or double-phase TPCs, limited mainly by the high electron diffusion in pure xenon. Helium admixtures with xenon can be an attractive solution to reduce the electron diffu- sion significantly, improving the discrimination efficiency of these optical TPCs. We have measured the electroluminescence (EL) yield of Xe–He mixtures, in the range of 0 to 30% He and demonstrated the small impact on the EL yield of the addition of helium to pure xenon. For a typical reduced electric field of 2.5 kV/cm/bar in the EL region, the EL yield is lowered by ∼ 2%, 3%, 6% and 10% for 10%, 15%, 20% and 30% of helium concentration, respectively. This decrease is less than what has been obtained from the most recent simulation framework in the literature. The impact of the addition of helium on EL statistical fluctuations is negligible, within the experimental uncertainties. The present results are an important benchmark for the simulation tools to be applied to future optical TPCs based on Xe-He mixtures. [Figure not available: see fulltext.]

    Energy calibration of the NEXT-White detector with 1% resolution near Q ββ of 136Xe

    Get PDF
    Excellent energy resolution is one of the primary advantages of electroluminescent high-pressure xenon TPCs. These detectors are promising tools in searching for rare physics events, such as neutrinoless double-beta decay (ββ0ν), which require precise energy measurements. Using the NEXT-White detector, developed by the NEXT (Neutrino Experiment with a Xenon TPC) collaboration, we show for the first time that an energy resolution of 1% FWHM can be achieved at 2.6 MeV, establishing the present technology as the one with the best energy resolution of all xenon detectors for ββ0ν searches. [Figure not available: see fulltext.

    Drug transporters: recent advances concerning BCRP and tyrosine kinase inhibitors

    Get PDF
    Multidrug resistance is often associated with the (over)expression of drug efflux transporters of the ATP-binding cassette (ABC) protein family. This minireview discusses the role of one selected ABC-transporter family member, the breast cancer resistance protein (BCRP/ABCG2), in the (pre)clinical efficacy of novel experimental anticancer drugs, in particular tyrosine kinase inhibitors

    Mitigation of backgrounds from cosmogenic Xe-137 in xenon gas experiments using He-3 neutron capture

    Full text link
    [EN] Xe-136 is used as the target medium for many experiments searching for 0 nu beta beta. Despite underground operation, cosmic muons that reach the laboratory can produce spallation neutrons causing activation of detector materials. A potential background that is difficult to veto using muon tagging comes in the form of Xe-137 created by the capture of neutrons on Xe-136. This isotope decays via beta decay with a half-life of 3.8 min and a Q(beta) of similar to 4.16 MeV. This work proposes and explores the concept of adding a small percentage of He-3 to xenon as a means to capture thermal neutrons and reduce the number of activations in the detector volume. When using this technique we find the contamination from Xe-137 activation can be reduced to negligible levels in tonne and multi-tonne scale high pressure gas xenon neutrinoless double beta decay experiments running at any depth in an underground laboratory.The work described was supported by the Department of Energy under Award numbers DE-SC0019054 and DE-SC0019223. The NEXT Collaboration acknowledges support from the following agencies and institutions: the European Research Council (ERC) under the Advanced Grant 339787-NEXT; the European Union's Framework Program for Research and Innovation Horizon 2020 (2014-2020) under the Marie Skodowska-Curie Grant Agreements No. 674896, 690575 and 740055; the Ministerio de Economia y Competitividad of Spain under grants FIS2014-53371-C04, the Severo Ochoa Program SEV-2014-0398 and the Maria de Maetzu Program MDM-2016-0692; the GVA of Spain under grants PROMETEO/2016/120 and SEJI/2017/011; the Portuguese FCT under project PTDC/FIS-NUC/2525/2014, under project UID/FIS/04559/2013 to fund the activities of LIBPhys, and under grants PD/BD/105921/2014, SFRH/BPD/109180/2015 and SFRH/BPD/76842/2011. Finally, we are grateful to the Laboratorio Subterraneo de Canfranc for hosting and supporting the NEXT experiment.Rogers, L.; Jones, BJP.; Laing, A.; Pingulkar, S.; Smithers, B.; Woodruff, K.; Adams, C.... (2020). Mitigation of backgrounds from cosmogenic Xe-137 in xenon gas experiments using He-3 neutron capture. Journal of Physics G Nuclear and Particle Physics. 47(7):1-17. https://doi.org/10.1088/1361-6471/ab8915S117477Nygren, D. (2009). High-pressure xenon gas electroluminescent TPC for 0-ν ββ-decay search. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 603(3), 337-348. doi:10.1016/j.nima.2009.01.222Ferrario, P., Laing, A., López-March, N., Gómez-Cadenas, J. J., Álvarez, V., … Cebrián, S. (2016). First proof of topological signature in the high pressure xenon gas TPC with electroluminescence amplification for the NEXT experiment. Journal of High Energy Physics, 2016(1). doi:10.1007/jhep01(2016)104Monrabal, F., Gómez-Cadenas, J. J., Toledo, J. F., Laing, A., Álvarez, V., Benlloch-Rodríguez, J. M., … Felkai, R. (2018). The NEXT White (NEW) detector. Journal of Instrumentation, 13(12), P12010-P12010. doi:10.1088/1748-0221/13/12/p12010Martín-Albo, J., Muñoz Vidal, J., Ferrario, P., Nebot-Guinot, M., Gómez-Cadenas, J. J., … Cárcel, S. (2016). Sensitivity of NEXT-100 to neutrinoless double beta decay. Journal of High Energy Physics, 2016(5). doi:10.1007/jhep05(2016)159Felkai, R., Monrabal, F., González-Díaz, D., Sorel, M., López-March, N., Gómez-Cadenas, J. J., … Azevedo, C. D. R. (2018). Helium–Xenon mixtures to improve the topological signature in high pressure gas xenon TPCs. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 905, 82-90. doi:10.1016/j.nima.2018.07.013McDonald, A. D., Woodruff, K., Atoum, B. A., González-Díaz, D., Jones, B. J. P., Adams, C., … Azevedo, C. D. . (2019). Electron drift and longitudinal diffusion in high pressure xenon-helium gas mixtures. Journal of Instrumentation, 14(08), P08009-P08009. doi:10.1088/1748-0221/14/08/p08009Anton, G., Badhrees, I., Barbeau, P. S., Beck, D., Belov, V., Bhatta, T., … Cen, W. R. (2019). Search for Neutrinoless Double- β Decay with the Complete EXO-200 Dataset. Physical Review Letters, 123(16). doi:10.1103/physrevlett.123.161802Albert, J. B., Anton, G., Arnquist, I. J., Badhrees, I., Barbeau, P., Beck, D., … Brown, E. (2018). Sensitivity and discovery potential of the proposed nEXO experiment to neutrinoless double- β decay. Physical Review C, 97(6). doi:10.1103/physrevc.97.065503Gando, A., Gando, Y., Hachiya, T., Hayashi, A., Hayashida, S., … Ikeda, H. (2016). Publisher’s Note: Search for Majorana Neutrinos Near the Inverted Mass Hierarchy Region with KamLAND-Zen [Phys. Rev. Lett.117, 082503 (2016)]. Physical Review Letters, 117(10). doi:10.1103/physrevlett.117.109903Jones, B. J. P., McDonald, A. D., & Nygren, D. R. (2016). Single molecule fluorescence imaging as a technique for barium tagging in neutrinoless double beta decay. Journal of Instrumentation, 11(12), P12011-P12011. doi:10.1088/1748-0221/11/12/p12011McDonald, A. D., Jones, B. J. P., Nygren, D. R., Adams, C., Álvarez, V., Azevedo, C. D. R., … Cárcel, S. (2018). Demonstration of Single-Barium-Ion Sensitivity for Neutrinoless Double-Beta Decay Using Single-Molecule Fluorescence Imaging. Physical Review Letters, 120(13). doi:10.1103/physrevlett.120.132504Thapa, P., Arnquist, I., Byrnes, N., Denisenko, A. A., Foss, F. W., Jones, B. J. P., … Woodruff, K. (2019). Barium Chemosensors with Dry-Phase Fluorescence for Neutrinoless Double Beta Decay. Scientific Reports, 9(1). doi:10.1038/s41598-019-49283-xChadwick, M. B., Herman, M., Obložinský, P., Dunn, M. E., Danon, Y., Kahler, A. C., … Arcilla, R. (2011). ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data. Nuclear Data Sheets, 112(12), 2887-2996. doi:10.1016/j.nds.2011.11.002Brown, D. A., Chadwick, M. B., Capote, R., Kahler, A. C., Trkov, A., Herman, M. W., … Dunn, M. (2018). ENDF/B-VIII.0: The 8 th Major Release of the Nuclear Reaction Data Library with CIELO-project Cross Sections, New Standards and Thermal Scattering Data. Nuclear Data Sheets, 148, 1-142. doi:10.1016/j.nds.2018.02.001Martínez-Lema, G., Morata, J. A. H., Palmeiro, B., Botas, A., Ferrario, P., Monrabal, F., … Para, A. (2018). Calibration of the NEXT-White detector using 83mKr decays. Journal of Instrumentation, 13(10), P10014-P10014. doi:10.1088/1748-0221/13/10/p10014Agostinelli, S., Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce, P., … Barrand, G. (2003). Geant4—a simulation toolkit. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 506(3), 250-303. doi:10.1016/s0168-9002(03)01368-8Albert, J. B., Daugherty, S. J., Johnson, T. N., O’Conner, T., Kaufman, L. J., Couture, A., … Krtička, M. (2016). Measurement of neutron capture onXe136. Physical Review C, 94(3). doi:10.1103/physrevc.94.034617Batchelor, R., Aves, R., & Skyrme, T. H. R. (1955). Helium‐3 Filled Proportional Counter for Neutron Spectroscopy. Review of Scientific Instruments, 26(11), 1037-1047. doi:10.1063/1.1715182Gibbons, J. H., & Macklin, R. L. (1959). Total Neutron Yields from Light Elements under Proton and Alpha Bombardment. Physical Review, 114(2), 571-580. doi:10.1103/physrev.114.571Haesner, B., Heeringa, W., Klages, H. O., Dobiasch, H., Schmalz, G., Schwarz, P., … Käppeler, F. (1983). Measurement of theHe3andHe4total neutron cross sections up to 40 MeV. Physical Review C, 28(3), 995-999. doi:10.1103/physrevc.28.995Antolković, B., Paić, G., Tomaš, P., & Rendić, D. (1967). Study of Neutron-Induced Reactions onHe3atEn=14.4MeV. Physical Review, 159(4), 777-781. doi:10.1103/physrev.159.777Seagrave, J. D., Cranberg, L., & Simmons, J. E. (1960). Elastic Scattering of Fast Neutrons by Tritium andHe3. Physical Review, 119(6), 1981-1991. doi:10.1103/physrev.119.1981Sayres, A. R., Jones, K. W., & Wu, C. S. (1961). Interaction of Neutrons withHe3. Physical Review, 122(6), 1853-1863. doi:10.1103/physrev.122.1853Als-Nielsen, J., & Dietrich, O. (1964). Slow Neutron Cross Sections forHe3, B, and Au. Physical Review, 133(4B), B925-B929. doi:10.1103/physrev.133.b925Bertini, H. W. (1963). Low-Energy Intranuclear Cascade Calculation. Physical Review, 131(4), 1801-1821. doi:10.1103/physrev.131.1801Barashenkov, V. S., Bertini, H. W., Chen, K., Friedlander, G., Harp, G. D., Iljinov, A. S., … Toneev, V. D. (1972). Medium energy intranuclear cascade calculations: a comparative study. Nuclear Physics A, 187(3), 531-544. doi:10.1016/0375-9474(72)90678-1BERTINI, H. W. (1969). Intranuclear-Cascade Calculation of the Secondary Nucleon Spectra from Nucleon-Nucleus Interactions in the Energy Range 340 to 2900 MeV and Comparisons with Experiment. Physical Review, 188(4), 1711-1730. doi:10.1103/physrev.188.1711Wright, D. H., & Kelsey, M. H. (2015). The Geant4 Bertini Cascade. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 804, 175-188. doi:10.1016/j.nima.2015.09.058Kudryavtsev, V. A. (2009). Muon simulation codes MUSIC and MUSUN for underground physics. Computer Physics Communications, 180(3), 339-346. doi:10.1016/j.cpc.2008.10.013Aharmim, B., Ahmed, S. N., Andersen, T. C., Anthony, A. E., Barros, N., Beier, E. W., … Biller, S. D. (2009). Measurement of the cosmic ray and neutrino-induced muon flux at the Sudbury neutrino observatory. Physical Review D, 80(1). doi:10.1103/physrevd.80.012001Wittenberg, L. J., Santarius, J. F., & Kulcinski, G. L. (1986). Lunar Source of3He for Commercial Fusion Power. Fusion Technology, 10(2), 167-178. doi:10.13182/fst86-a24972Ahmad, Q. R., Allen, R. C., Andersen, T. C., D.Anglin, J., Barton, J. C., Beier, E. W., … Black, R. A. (2002). Direct Evidence for Neutrino Flavor Transformation from Neutral-Current Interactions in the Sudbury Neutrino Observatory. Physical Review Letters, 89(1). doi:10.1103/physrevlett.89.011301Amsbaugh, J. F., Anaya, J. M., Banar, J., Bowles, T. J., Browne, M. C., Bullard, T. V., … Deng, H. (2007). An array of low-background 3He proportional counters for the Sudbury Neutrino Observatory. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 579(3), 1054-1080. doi:10.1016/j.nima.2007.05.321Tastevin, G. (2000). Optically Polarized Helium-3 for N.M.R. Imaging in Medicine. Physica Scripta, T86(1), 46. doi:10.1238/physica.topical.086a00046Fain, S., Schiebler, M. L., McCormack, D. G., & Parraga, G. (2010). Imaging of lung function using hyperpolarized helium-3 magnetic resonance imaging: Review of current and emerging translational methods and applications. Journal of Magnetic Resonance Imaging, 32(6), 1398-1408. doi:10.1002/jmri.22375Korff, S. A., & Danforth, W. E. (1939). Neutron Measurements with Boron-Trifluoride Counters. Physical Review, 55(10), 980-980. doi:10.1103/physrev.55.980Lintereur, A., Conlin, K., Ely, J., Erikson, L., Kouzes, R., Siciliano, E., … Woodring, M. (2011). 3He and BF3 neutron detector pressure effect and model comparison. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 652(1), 347-350. doi:10.1016/j.nima.2010.10.040Fowler, I. L., & Tunnicliffe, P. R. (1950). Boron Trifluoride Proportional Counters. Review of Scientific Instruments, 21(8), 734-740. doi:10.1063/1.1745700Segrè, E., & Wiegand, C. (1947). Boron Trifluoride Neutron Detector for Low Neutron Intensities. Review of Scientific Instruments, 18(2), 86-89. doi:10.1063/1.1740909Böhlen, T. T., Cerutti, F., Chin, M. P. W., Fassò, A., Ferrari, A., Ortega, P. G., … Vlachoudis, V. (2014). The FLUKA Code: Developments and Challenges for High Energy and Medical Applications. Nuclear Data Sheets, 120, 211-214. doi:10.1016/j.nds.2014.07.049Ferrari, A., Sala, P. R., Fasso, A., & Ranft, J. (2005). FLUKA: A Multi-Particle Transport Code. doi:10.2172/87750

    Low-diffusion Xe-He gas mixtures for rare-event detection: Electroluminescence Yield

    Full text link
    High pressure xenon Time Projection Chambers (TPC) based on secondary scintillation (electroluminescence) signal amplification are being proposed for rare event detection such as directional dark matter, double electron capture and double beta decay detection. The discrimination of the rare event through the topological signature of primary ionisation trails is a major asset for this type of TPC when compared to single liquid or double-phase TPCs, limited mainly by the high electron diffusion in pure xenon. Helium admixtures with xenon can be an attractive solution to reduce the electron diffusion significantly, improving the discrimination efficiency of these optical TPCs. We have measured the electroluminescence (EL) yield of Xe-He mixtures, in the range of 0 to 30% He and demonstrated the small impact on the EL yield of the addition of helium to pure xenon. For a typical reduced electric field of 2.5 kV/cm/bar in the scintillation region, the EL yield is lowered by ~ 2%, 3%, 6% and 10% for 10%, 15%, 20% and 30% of helium concentration, respectively. This decrease is less than what has been obtained from the most recent simulation framework in the literature. The impact of the addition of helium on EL statistical fluctuations is negligible, within the experimental uncertainties. The present results are an important benchmark for the simulation tools to be applied to future optical TPCs based on Xe-He mixtures
    corecore