275 research outputs found

    Resprouting potential of rhizome fragments from invasive macrophyte reveals superior colonization ability of the diploid congener

    Get PDF
    Non-native aquatic Ludwigia species from a polyploid complex are among the world’s most problematic invasive plants. These emergent, floating-leaved species respond to disturbance through fragmentation of shoots and/or rhizomes, spreading rapidly by hydrochorous dispersal and posing challenges for invasive plant management. While recruitment of clonal aquatic plant species from shoot fragmentation is well documented, regeneration from rhizome bud banks, although common, often is overlooked. It is further unclear how interactions among ploidy and resource availability influence regeneration success of rhizome fragments. We conducted a full factorial experiment in aquatic mesocosms to compare trait responses of Ludwigia congeners differing in ploidy (diploid, decaploid) grown from clonal rhizome fragments under contrasting soil nutrient availability (low, high). Similar to previous work with shoot fragments, the diploid congener had a higher relative growth rate and produced more biomass than the decaploid during this establishment stage of growth. High growth rates and biomass production were associated with greater rhizome N and P and reduced investment in below-ground structures. Comparing these results to previous shoot fragment studies with Ludwigia, rhizome fragments appear to have much greater growth potential, suggesting that management strategies should minimize disturbance to prevent fragmentation and dispersal of below-ground structures. Furthermore, rapid response to newly colonizing diploid invaders will be essential to minimizing spread, and reductions in nutrient loads to aquatic environments may be more effective towards controlling establishment of the diploid congener than the decaploid

    Resprouting potential of rhizome fragments from invasive macrophyte reveals superior colonization ability of the diploid congener

    Get PDF
    Non-native aquatic Ludwigia species from a polyploid complex are among the world’s most problematic invasive plants. These emergent, floating-leaved species respond to disturbance through fragmentation of shoots and/or rhizomes, spreading rapidly by hydrochorous dispersal and posing challenges for invasive plant management. While recruitment of clonal aquatic plant species from shoot fragmentation is well documented, regeneration from rhizome bud banks, although common, often is overlooked. It is further unclear how interactions among ploidy and resource availability influence regeneration success of rhizome fragments. We conducted a full factorial experiment in aquatic mesocosms to compare trait responses of Ludwigia congeners differing in ploidy (diploid, decaploid) grown from clonal rhizome fragments under contrasting soil nutrient availability (low, high). Similar to previous work with shoot fragments, the diploid congener had a higher relative growth rate and produced more biomass than the decaploid during this establishment stage of growth. High growth rates and biomass production were associated with greater rhizome N and P and reduced investment in below-ground structures. Comparing these results to previous shoot fragment studies with Ludwigia, rhizome fragments appear to have much greater growth potential, suggesting that management strategies should minimize disturbance to prevent fragmentation and dispersal of below-ground structures. Furthermore, rapid response to newly colonizing diploid invaders will be essential to minimizing spread, and reductions in nutrient loads to aquatic environments may be more effective towards controlling establishment of the diploid congener than the decaploid

    Trait responses of invasive aquatic macrophyte congeners: colonizing diploid outperforms polyploid

    Get PDF
    Understanding traits underlying colonization and niche breadth of invasive plants is key to developing sustainable management solutions to curtail invasions at the establishment phase, when efforts are often most effective. The aim of this study was to evaluate how two invasive congeners differing in ploidy respond to high and low resource availability following establishment from asexual fragments. Because polyploids are expected to have wider niche breadths than diploid ancestors, we predicted that a decaploid species would have superior ability to maximize resource uptake and use, and outperform a diploid congener when colonizing environments with contrasting light and nutrient availability. A mesocosm experiment was designed to test the main and interactive effects of ploidy (diploid and decaploid) and soil nutrient availability (low and high) nested within light environments (shade and sun) of two invasive aquatic plant congeners. Counter to our predictions, the diploid congener outperformed the decaploid in the early stage of growth. Although growth was similar and low in the cytotypes at low nutrient availability, the diploid species had much higher growth rate and biomass accumulation than the polyploid with nutrient enrichment, irrespective of light environment. Our results also revealed extreme differences in time to anthesis between the cytotypes. The rapid growth and earlier flowering of the diploid congener relative to the decaploid congener represent alternate strategies for establishment and success

    Electrochemical characterization of innovative hybrid coatings for metallic artefacts

    Get PDF
    In this paper, an electrochemical characterization of two different hybrid coatings is presented, with the specific aim of studying their corrosion protection behavior and better understanding their possible application in the cultural heritage field. The two formulations under study were epoxy resin containing silica nanoparticles and epoxy resin containing graphene oxide. Electrochemical Impedance Spectroscopy (EIS) and Scanning ElectroChemical Microscopy (SECM) were used to compare the electrochemical behavior of the two coatings and highlight their failure mechanism when immersed in an electrolytic solution containing chlorides. The investigation highlighted the good corrosion protective properties of both coatings; and moreover, thanks to the joined use of the two described analytical techniques, the different water uptake of the two solutions was studied, together with the different evolution of the coating surface morphology when immersed in the electrolytic solution

    Metastasis: Recent Discoveries and Novel Perioperative Treatment Strategies with Particular Interest in the Hemostatic Compound Desmopressin

    Get PDF
    Metastatic disease is responsible for most of cancer lethality. A main obstacle for therapy of advanced cancers is that the outcome of metastasis depends on a complex interplay between malignant and host cells. The perioperative period represents an underutilized window of opportunity for cancer treatment where tumor-host interactions can be modulated, reducing the risk of local recurrences and distant metastases. Blood-saving agents are attractive compounds to be administered during tumor surgery. Desmopressin (DDAVP) is a safe and convenient hemostatic peptide with proved antimetastastic properties in experimental models and veterinary clinical trials. The compound seems to induce a dual angiostatic and antimetastatic effect, breaking the cooperative function of cancer cells and endothelial cells during residual tumor progression. DDAVP is therefore an interesting lead compound to develop novel synthetic peptide analogs with enhanced antitumor properties

    Single-cell microfluidics facilitates the rapid quantification of antibiotic accumulation in Gram-negative bacteria (article)

    Get PDF
    This is the final version. Available on open access from the Royal Society of Chemistry via the DOI in this recordData availability: All the data is available in the main text or in the supplementary materials.The code associated with this article is located in ORE at: http://hdl.handle.net/10871/121661The double-membrane cell envelope of Gram-negative bacteria is a formidable barrier to intracellular antibiotic accumulation. A quantitative understanding of antibiotic transport in these cells is crucial for drug development, but this has proved elusive due to a dearth of suitable investigative techniques. Here we combine microfluidics and time-lapse auto-fluorescence microscopy to rapidly quantify antibiotic accumulation in hundreds of individual Escherichia coli cells. By serially manipulating the microfluidic environment, we demonstrated that stationary phase Escherichia coli, traditionally more refractory to antibiotics than growing cells, display reduced accumulation of the antibiotic ofloxacin compared to actively growing cells. Our novel microfluidic method facilitates the quantitative comparison of the role of the microenvironment versus various membrane transport pathways in cellular drug accumulation. Unlike traditional techniques, our assay is rapid, studying accumulation as the cells are dosed with the drug. This platform provides a powerful new tool for studying antibiotic accumulation in bacteria, which will be critical for the rational development of the next generation of antibiotics.European CommissionBiotechnology and Biological Sciences Research Council (BBSRC)Engineering and Physical Sciences Research Council (EPSRC)University of Exeter School of BiosciencesEuropean Union Horizon 2020Medical Research Council (MRC)Royal SocietyWellcome TrustGW4 Initiator awar

    Short-term Treatment with Dabigatran Alters Protein Expression Patterns in a Late-Stage Tau-Based Alzheimer\u27s Disease Mouse Model

    Get PDF
    Proteins that regulate the coagulation cascade, including thrombin, are elevated in the brains of Alzheimer\u27s disease (AD) patients. While studies using amyloid-based AD transgenic mouse models have implicated thrombin as a protein of interest, the role of thrombin in tau-based animal models has not been explored. The current study aims to determine how inhibiting thrombin could alter oxidative stress, inflammation, and AD-related proteins in a tau-based mouse model, the Tg4510. Aged Tg4510 mice were treated with the direct thrombin inhibitor dabigatran or vehicle for 7 days, brains collected, and western blot and data-independent proteomics using mass spectrometry with SWATH-MS acquisition performed to evaluate proteins related to oxidative stress, intracellular signaling, inflammation, and AD pathology. Dabigatran reduced iNOS, NOX4, and phosphorylation of tau (S396, S416). Additionally, dabigatran treatment increased expression of several signaling proteins related to cell survival and synaptic function. Increasing evidence supports a chronic procoagulant state in AD, highlighting a possible pathogenic role for thrombin. Our data demonstrate that inhibiting thrombin produces alterations in the expression of proteins involved in oxidative stress, inflammation, and AD-related pathology, suggesting that thrombin-mediated signaling affects multiple AD-related pathways providing a potential future therapeutic target
    • …
    corecore