34 research outputs found

    Hormone Treatment without Surgery for Patients Aged 75 Years or Older with Operable Breast Cancer

    Get PDF
    Purpose. To evaluate the trend in the use of primary endocrine treatment (PET) for elderly patients with operable breast cancer and to study mean time to response (TTR), local control, time to progression (TTP), and overall survival.Methods. Data of 184 patients aged >= 75 years, diagnosed with breast cancer in the south of the Netherlands between 2001 and 2008 and receiving PET, were analyzed.Results. The percentage of women >= 75 years with breast cancer receiving PET in the south of the Netherlands decreased from 23% in the period 1988-1992 to 12% in 1997-2000, and increased to 29% in 2005-2008. Mean age at diagnosis of 184 patients treated with PET in the period 2001-2008 was 84 years (range 75-89 years). Mean length of follow-up was 2.6 years. In 107 patients (58%), an initial response was achieved (mean TTR 7 months), 21 patients (12%) showed stable disease. A total of 64 patients (35%), with or without prior response, eventually displayed progression (mean TTP 20 months). No differences in TTR and TTP were observed between the patients starting with tamoxifen or an aromatase inhibitor. One hundred nineteen (65%) of 184 patients had died by January 1, 2010. In 17 patients (14%), breast cancer was the cause of death.Conclusions. Tumor progression was observed in a substantial proportion of the cohort, but only a small number of patients died of breast cancer. Further research is needed on the safety and effectiveness of PET for elderly women with breast cancer to justify the current widespread use.Biological, physical and clinical aspects of cancer treatment with ionising radiatio

    Projected Loss of a Salamander Diversity Hotspot as a Consequence of Projected Global Climate Change

    Get PDF
    Background: Significant shifts in climate are considered a threat to plants and animals with significant physiological limitations and limited dispersal abilities. The southern Appalachian Mountains are a global hotspot for plethodontid salamander diversity. Plethodontids are lungless ectotherms, so their ecology is strongly governed by temperature and precipitation. Many plethodontid species in southern Appalachia exist in high elevation habitats that may be at or near their thermal maxima, and may also have limited dispersal abilities across warmer valley bottoms. Methodology/Principal Findings: We used a maximum-entropy approach (program Maxent) to model the suitable climatic habitat of 41 plethodontid salamander species inhabiting the Appalachian Highlands region (33 individual species and eight species included within two species complexes). We evaluated the relative change in suitable climatic habitat for these species in the Appalachian Highlands from the current climate to the years 2020, 2050, and 2080, using both the HADCM3 and the CGCM3 models, each under low and high CO 2 scenarios, and using two-model thresholds levels (relative suitability thresholds for determining suitable/unsuitable range), for a total of 8 scenarios per species. Conclusion/Significance: While models differed slightly, every scenario projected significant declines in suitable habitat within the Appalachian Highlands as early as 2020. Species with more southern ranges and with smaller ranges had larger projected habitat loss. Despite significant differences in projected precipitation changes to the region, projections did no

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    corecore