9,791 research outputs found

    Observational tests for oscillating expansion rate of the Universe

    Full text link
    We investigate the observational constraints on the oscillating scalar field model using data from type Ia supernovae, cosmic microwave background anisotropies, and baryon acoustic oscillations. According to a Fourier analysis, the galaxy number count NN from redshift zz data indicates that galaxies have preferred periodic redshift spacings. We fix the mass of the scalar field as mϕ=3.2×10−31hm_\phi=3.2\times 10^{-31}h eV{\rm eV} such that the scalar field model can account for the redshift spacings, and we constrain the other basic parameters by comparing the model with accurate observational data. We obtain the following constraints: Ωm,0=0.28±0.03\Omega_{m,0}=0.28\pm 0.03 (95% C.L.), Ωϕ,0−158\Omega_{\phi,0} -158 (95% C.L.) (in the range ξ≤0\xi \le 0). The best fit values of the energy density parameter of the scalar field and the coupling constant are Ωϕ,0=0.01\Omega_{\phi,0}= 0.01 and ξ=−25\xi= -25, respectively. The value of Ωϕ,0\Omega_{\phi,0} is close to but not equal to 00. Hence, in the scalar field model, the amplitude of the galaxy number count cannot be large. However, because the best fit values of Ωϕ,0\Omega_{\phi,0} and ξ\xi are not 00, the scalar field model has the possibility of accounting for the periodic structure in the NN--zz relation of galaxies. The variation of the effective gravitational constant in the scalar field model is not inconsistent with the bound from observation.Comment: 9 pages, 11 figures, 1 table, Accepted for publication in Physical Review

    The centrality dependence of v2/epsilon: the ideal hydro limit and eta/s

    Full text link
    The large elliptic flow observed at RHIC is considered to be evidence for almost perfect liquid behavior of the strongly coupled quark-gluon plasma produced in the collisions. In these proceedings we present a two parameter fit for the centrality dependence of the elliptic flow scaled by the spatial eccentricity. We show by comparing to viscous hydrodynamical calculations that these two parameters are in good approximation proportional to the shear viscosity over entropy ratio and the ideal hydro limit of the ratio v2/epsilon.Comment: 4 pages, 8 figures - To appear in the conference proceedings for Quark Matter 2009, March 30 - April 4, Knoxville, Tennessee - final version without line number

    Pseudorapidity dependence of parton energy loss in relativistic heavy ion collisions

    Full text link
    We analyze the recent data from the BRAHMS Collaboration on the pseudorapidity dependence of nuclear modification factors in Au+Au collisions at sNN\sqrt{s_{NN}} = 200 GeV by using the full three dimensional hydrodynamic simulations for the density effects on parton energy loss. We first compute the transverse spectra at η=0\eta=0 and 2.2, and next take a ratio Rη=RAA(η=2.2)/RAA(η=0)R_{\eta}=R_{AA}(\eta=2.2)/R_{AA}(\eta=0), where RAAR_{AA} is a nuclear modification factor. It is shown that hydrodynamic components account for Rη≃1R_{\eta}\simeq 1 at low pTp_\mathrm{T} and that quenched pQCD components lead Rη<1R_{\eta} < 1 at high pTp_\mathrm{T} which are consistent with the data. Strong suppression at η=2.2\eta=2.2 is compatible with the parton energy loss in the final state.Comment: 5 pages, 4 figures; one figure adde

    Jet quenching and direct photon production

    Full text link
    Jet quenching effect has been investigated in the direct photon production, based on a realistic data-constrained (3+1) dimensional hydrodynamic description of the expanding hot and dense matter, a reasonable treatment of the propagation of partons and their energy loss in the fluid, and a systematic study of the main sources of direct photons. Our resultant \pt spectra agree with recent PHENIX data in a broad \pt range. Parton energy loss in the plasma eventually effect significantly direct photon production from fragmentation and jet photon conversion, similar to hadron suppression in central heavy ion collisions. But this only causes about 40% decrease in the total production of direct photons, due to the mixture with other direct photon sources.Comment: 6 pages and 3 figures, To appear in the proceedings of the International Conference on Strangeness in Quark matter (SQM2008), Beijing, China, Oct 6-10, 200

    Search for the onset of baryon anomaly at RHIC-PHENIX

    Get PDF
    The baryon production mechanism at the intermediate pTp_T (2 - 5 GeV/cc) at RHIC is still not well understood. The beam energy scan data in Cu+Cu and Au+Au systems at RHIC may provide us a further insight on the origin of the baryon anomaly and its evolution as a function of sNN\sqrt{s_{NN}}. In 2005 RHIC physics program, the PHENIX experiment accumulated the first intensive low beam energy data in Cu+Cu collisions. We present the preliminary results of identified charged hadron spectra in Cu+Cu at sNN\sqrt{s_{NN}} = 22.5 and 62.4 GeV using the PHENIX detector. The centrality and beam energy dependences of (anti)proton to pion ratios and the nuclear modification factors for charged pions and (anti)protons are presented.Comment: 5 pages, 9 figures, proceedings for Hot Quarks 2006 workshop, Villasimius, Sardinia, Italy, May 15 - 20, 2006. Proceedings of the conference will be published in The European Physical Journal

    Submillimeter CO emission from shock-heated gas in the L1157 outflow

    Get PDF
    We present the CO J=6-5, 4-3, and 3-2 spectra from the blueshifted gas of the outflow driven by the low-mass class 0 protostar in the L1157 dark cloud. Strong submillimeter CO emission lines with T_mb > 30 K have been detected at 63" (~0.13 pc) south from the protostar. It is remarkable that the blue wings in the submillimeter lines are stronger by a factor of 3-4 than that of the CO J=1-0 emission line. The CO line ratios suggest that the blueshifted lobe of this outflow consists of moderately dense gas of n(H_2) = (1-3)x10^4 cm^-3 heated to T_kin = 50-170 K.It is also suggested that the kinetic temperature of the outflowing gas increases from ~80 K near the protostar to ~170 K at the shocked region in the lobe center, toward which the largest velocity dispersion of the CO emission is observed. A remarkable correlation between the kinetic temperature and velocity dispersion of the CO emission along the lobe provides us with direct evidence that the molecular gas at the head of the jet-driven bow shock is indeed heated kinematically. The lower temperature of ~80 K measured at the other shocked region near the end of the lobe is explained if this shock is in a later evolutionary stage, in which the gas has been cooled mainly through radiation of the CO rotational lines.Comment: 10 pages, 4 PDF figures, APJL in pres

    Interplay between soft and hard hadronic components for identified hadrons in relativistic heavy ion collisions

    Full text link
    We investigate the transverse dynamics in Au+Au collisions at \sqrt{s_NN}=200 GeV by emphasis upon the interplay between soft and hard components through p_T dependences of particle spectra, ratios of yields, suppression factors, and elliptic flow for identified hadrons. From hydrodynamics combined with traversing minijets which go through jet quenching in the hot medium, we calculate interactions of hard jets with the soft hydrodynamic components. It is shown by the explicit dynamical calculations that the hydrodynamic radial flow and the jet quenching of hard jets are the keys to understand the differences among the hadron spectra for pions, kaons, and protons. This leads to the natural interpretation for N_p/N_\pi ~ 1, R_{AA} >~ 1 for protons, and v_2^p > v_2^\pi recently observed in the intermediate transverse momentum region at Relativistic Heavy Ion Collider (RHIC).Comment: 11 pages, 9 figures; some references added; title changed, some data points included in figure

    Genomic donor cassette sharing during VLRA and VLRC assembly in jawless vertebrates

    No full text
    Lampreys possess two T-like lymphocyte lineages that express either variable lymphocyte receptor (VLR) A or VLRC antigen receptors. VLRA+ and VLRC+ lymphocytes share many similarities with the two principal T-cell lineages of jawed vertebrates expressing the αβ and γδ T-cell receptors (TCRs). During the assembly of VLR genes, several types of genomic cassettes are inserted, in step-wise fashion, into incomplete germ-line genes to generate the mature forms of antigen receptor genes. Unexpectedly, the structurally variable components of VLRA and VLRC receptors often possess partially identical sequences; this phenomenon of module sharing between these two VLR isotypes occurs in both lampreys and hagfishes. By contrast, VLRA and VLRC molecules typically do not share their building blocks with the structurally analogous VLRB receptors that are expressed by B-like lymphocytes. Our studies reveal that VLRA and VLRC germ-line genes are situated in close proximity to each other in the lamprey genome and indicate the interspersed arrangement of isotype-specific and shared genomic donor cassettes; these features may facilitate the shared cassette use. The genomic structure of the VLRA/VLRC locus in lampreys is reminiscent of the interspersed nature of the TCRA/TCRD locus in jawed vertebrates that also allows the sharing of some variable gene segments during the recombinatorial assembly of TCR genes

    CGC, Hydrodynamics, and the Parton Energy Loss

    Full text link
    Hadron spectra in Au+Au collisions at RHIC are calculated by hydrodynamics with initial conditions from the Color Glass Condensate (CGC). Minijet components with parton energy loss in medium are also taken into account by using parton density obtained from hydrodynamical simulations. We found that CGC provides a good initial condition for hydrodynamics in Au+Au collisions at RHIC.Comment: Quark Matter 2004 contribution, 4 pages, 2 figure
    • …
    corecore