1,518 research outputs found

    Logarithmic roughening in a growth process with edge evaporation

    Full text link
    Roughening transitions are often characterized by unusual scaling properties. As an example we investigate the roughening transition in a solid-on-solid growth process with edge evaporation [Phys. Rev. Lett. 76, 2746 (1996)], where the interface is known to roughen logarithmically with time. Performing high-precision simulations we find appropriate scaling forms for various quantities. Moreover we present a simple approximation explaining why the interface roughens logarithmically.Comment: revtex, 6 pages, 7 eps figure

    Equal-time correlation function for directed percolation

    Full text link
    We suggest an equal-time n-point correlation function for systems in the directed percolation universality class which is well defined in all phases and independent of initial conditions. It is defined as the probability that all points are connected with a common ancestor in the past by directed paths.Comment: LaTeX, 12 pages, 8 eps figure

    Dynamics and stability of wind turbine generators

    Get PDF
    Synchronous and induction generators are considered. A comparison is made between wind turbines, steam, and hydro units. The unusual phenomena associated with wind turbines are emphasized. The general control requirements are discussed, as well as various schemes for torsional damping such as speed sensitive stabilizer and blade pitch control. Integration between adjacent wind turbines in a wind farm is also considered

    Binary spreading process with parity conservation

    Full text link
    Recently there has been a debate concerning the universal properties of the phase transition in the pair contact process with diffusion (PCPD) 2A→3A,2A→∅2A\to 3A, 2A\to \emptyset. Although some of the critical exponents seem to coincide with those of the so-called parity-conserving universality class, it was suggested that the PCPD might represent an independent class of phase transitions. This point of view is motivated by the argument that the PCPD does not conserve parity of the particle number. In the present work we pose the question what happens if the parity conservation law is restored. To this end we consider the the reaction-diffusion process 2A→4A,2A→∅2A\to 4A, 2A\to \emptyset. Surprisingly this process displays the same type of critical behavior, leading to the conclusion that the most important characteristics of the PCPD is the use of binary reactions for spreading, regardless of whether parity is conserved or not.Comment: RevTex, 4pages, 4 eps figure

    Absorbing Phase Transitions of Branching-Annihilating Random Walks

    Full text link
    The phase transitions to absorbing states of the branching-annihilating reaction-diffusion processes mA --> (m+k)A, nA --> (n-l)A are studied systematically in one space dimension within a new family of models. Four universality classes of non-trivial critical behavior are found. This provides, in particular, the first evidence of universal scaling laws for pair and triplet processes.Comment: 4 pages, 4 figure

    Five-dimensional Superfield Supergravity

    Get PDF
    We present a projective superspace formulation for matter-coupled simple supergravity in five dimensions. Our starting point is the superspace realization for the minimal supergravity multiplet proposed by Howe in 1981. We introduce various off-shell supermultiplets (i.e. hypermultiplets, tensor and vector multiplets) that describe matter fields coupled to supergravity. A projective-invariant action principle is given, and specific dynamical systems are constructed including supersymmetric nonlinear sigma-models. We believe that this approach can be extended to other supergravity theories with eight supercharges in D≤6D\leq 6 space-time dimensions, including the important case of 4D N=2 supergravity.Comment: 18 pages, LaTeX; v2: comments added; v3: minor changes, references added; v4: comments, reference added, version to appear in PL

    Long-range epidemic spreading with immunization

    Full text link
    We study the phase transition between survival and extinction in an epidemic process with long-range interactions and immunization. This model can be viewed as the well-known general epidemic process (GEP) in which nearest-neighbor interactions are replaced by Levy flights over distances r which are distributed as P(r) ~ r^(-d-sigma). By extensive numerical simulations we confirm previous field-theoretical results obtained by Janssen et al. [Eur. Phys. J. B7, 137 (1999)].Comment: LaTeX, 14 pages, 4 eps figure

    Multicritical behavior in coupled directed percolation processes

    Full text link
    We study a hierarchy of directed percolation (DP) processes for particle species A, B, ..., unidirectionally coupled via the reactions A -> B, ... When the DP critical points at all levels coincide, multicritical behavior emerges, with density exponents \beta^{(k)} which are markedly reduced at each hierarchy level k >= 2. We compute the fluctuation corrections to \beta^{(2)} to O(\epsilon = 4-d) using field-theoretic renormalization group techniques. Monte Carlo simulations are employed to determine the new exponents in dimensions d <= 3.Comment: 5 pages, RevTex, no figures; final version, to appear in Phys. Rev. Lett. (1998

    Numerical study of a model for non-equilibrium wetting

    Full text link
    We revisit the scaling properties of a model for non-equilibrium wetting [Phys. Rev. Lett. 79, 2710 (1997)], correcting previous estimates of the critical exponents and providing a complete scaling scheme. Moreover, we investigate a special point in the phase diagram, where the model exhibits a roughening transition related to directed percolation. We argue that in the vicinity of this point evaporation from the middle of plateaus can be interpreted as an external field in the language of directed percolation. This analogy allows us to compute the crossover exponent and to predict the form of the phase transition line close to its terminal point.Comment: 8 pages, 8 figure

    Presidential Address: Leadership in Mathematics and Science

    Get PDF
    • …
    corecore