15 research outputs found
A method for atomistic spin dynamics simulations: implementation and examples
We present a method for performing atomistic spin dynamic simulations. A
comprehensive summary of all pertinent details for performing the simulations
such as equations of motions, models for including temperature, methods of
extracting data and numerical schemes for performing the simulations is given.
The method can be applied in a first principles mode, where all interatomic
exchange is calculated self-consistently, or it can be applied with frozen
parameters estimated from experiments or calculated for a fixed
spin-configuration. Areas of potential applications to different magnetic
questions are also discussed. The method is finally applied to one situation
where the macrospin model breaks down; magnetic switching in ultra strong
fields.Comment: 14 pages, 19 figure
Microscopic Theory for Coupled Atomistic Magnetization and Lattice Dynamics
A coupled atomistic spin and lattice dynamics approach is developed which
merges the dynamics of these two degrees of freedom into a single set of
coupled equations of motion. The underlying microscopic model comprises local
exchange interactions between the electron spin and magnetic moment and the
local couplings between the electronic charge and lattice displacements. An
effective action for the spin and lattice variables is constructed in which the
interactions among the spin and lattice components are determined by the
underlying electronic structure. In this way, expressions are obtained for the
electronically mediated couplings between the spin and lattice degrees of
freedom, besides the well known inter-atomic force constants and spin-spin
interactions. These former susceptibilities provide an atomistic ab initio
description for the coupled spin and lattice dynamics. It is important to
notice that this theory is strictly bilinear in the spin and lattice variables
and provides a minimal model for the coupled dynamics of these subsystems and
that the two subsystems are treated on the same footing. Questions concerning
time-reversal and inversion symmetry are rigorously addressed and it is shown
how these aspects are absorbed in the tensor structure of the interaction
fields. By means of these results regarding the spin-lattice coupling, simple
explanations of ionic dimerization in double anti-ferromagnetic materials, as
well as, charge density waves induced by a non-uniform spin structure are
given. In the final parts, a set of coupled equations of motion for the
combined spin and lattice dynamics are constructed, which subsequently can be
reduced to a form which is analogous to the Landau-Lifshitz-Gilbert equations
for spin dynamics and damped driven mechanical oscillator for the ...Comment: 22 pages, including 7 pages of Appendix and references, 6 figure
Atomistic spin dynamics of the CuMn spin glass alloy
We demonstrate the use of Langevin spin dynamics for studying dynamical
properties of an archetypical spin glass system. Simulations are performed on
CuMn (20% Mn) where we study the relaxation that follows a sudden quench of the
system to the low temperature phase. The system is modeled by a Heisenberg
Hamiltonian where the Heisenberg interaction parameters are calculated by means
of first-principles density functional theory. Simulations are performed by
numerically solving the Langevin equations of motion for the atomic spins. It
is shown that dynamics is governed, to a large degree, by the damping parameter
in the equations of motion and the system size. For large damping and large
system sizes we observe the typical aging regime.Comment: 18 pages, 9 figure
Simulation of a spin-wave instability from atomistic spin dynamics
We study the spin dynamics of a Heisenberg model at finite temperature in the
presence of an external field or a uniaxial anisotropy. For the case of the
uniaxial anisotropy our simulations show that the macro moment picture breaks
down. An effect which we refer to as a spin-wave instability (SWI) results in a
non-dissipative Bloch-Bloembergen type relaxation of the macro moment where the
size of the macro moment changes, and can even be made to disappear. This
relaxation mechanism is studied in detail by means of atomistic spin dynamics
simulations.Comment: 8 pages, 12 figures, submitted to PR
Dynamics of diluted magnetic semiconductors from atomistic spin dynamics simulations: Mn doped GaAs as a case study
The dynamical behavior of the magnetism of diluted magnetic semiconductors
(DMS) has been investigated by means of atomistic spin dynamics simulations.
The conclusions drawn from the study are argued to be general for DMS systems
in the low concentration limit, although all simulations are done for 5%
Mn-doped GaAs with various concentrations of As antisite defects. The
magnetization curve, , and the Curie temperature have been
calculated, and are found to be in good correspondence to results from Monte
Carlo simulations and experiments. Furthermore, equilibrium and non-equilibrium
behavior of the magnetic pair correlation function have been extracted. The
dynamics of DMS systems reveals a substantial short ranged magnetic order even
at temperatures at or above the ordering temperature, with a non-vanishing pair
correlation function extending up to several atomic shells. For the high As
antisite concentrations the simulations show a short ranged anti-ferromagnetic
coupling, and a weakened long ranged ferromagnetic coupling. For sufficiently
large concentrations we do not observe any long ranged ferromagnetic
correlation. A typical dynamical response shows that starting from a random
orientation of moments, the spin-correlation develops very fast ( 1ps)
extending up to 15 atomic shells. Above 10 ps in the simulations, the
pair correlation is observed to extend over some 40 atomic shells. The
autocorrelation function has been calculated and compared with ferromagnets
like bcc Fe and spin-glass materials. We find no evidence in our simulations
for a spin-glass behaviour, for any concentration of As antisites. Instead the
magnetic response is better described as slow dynamics, at least when compared
to that of a regular ferromagnet like bcc Fe.Comment: 24 pages, 15 figure
Simulation of a spin-wave instability from atomistic spin dynamics
We study the spin dynamics of a Heisenberg model at finite temperature in the
presence of an external field or a uniaxial anisotropy. For the case of the
uniaxial anisotropy our simulations show that the macro moment picture breaks
down. An effect which we refer to as a spin-wave instability (SWI) results in a
non-dissipative Bloch-Bloembergen type relaxation of the macro moment where the
size of the macro moment changes, and can even be made to disappear. This
relaxation mechanism is studied in detail by means of atomistic spin dynamics
simulations.Comment: 8 pages, 12 figures, submitted to PR
Ultrafast cooling and heating scenarios for the laser-induced phase transition in CuO
Contains fulltext :
166163.pdf (publisher's version ) (Open Access
Exchange Coupling and Exchange Bias in FM/AFM Bilayers for a Fully Compensated AFM Interface
We address the interlayer coupling in a ferromagnet/antiferromagnet bilayer where the interface of the antiferromagnet is fully compensated. We discuss the role of different types of exchange interaction for the interlayer coupling and exchange bias. We propose two types of corrections to the ideal Heisenberg Hamiltonian which may explain exchange bias. The first is a correction for the angular dependence of the exchange interactions and the second a correction due to magnetostriction and interface imperfections. The first correction contributes to an anisotropy at the interface and favors either parallel or perpendicular coupling across the interface. The second correction contributes to the exchange bias. Our analysis is based on atomic spin dynamics simulations, and our results show that small corrections to the ideal Heisenberg Hamiltonian may have macroscopic consequences in systems with frustrated interatomic interactions
Ultrafast spin dynamics in multisublattice magnets
Contains fulltext :
94156.pdf (publisher's version ) (Open Access