268 research outputs found

    The summer aerosol in the central Arctic 1991–2008: did it change or not?

    Get PDF
    In the course of global warming dramatic changes are taking place in the Arctic and boreal environments. However, physical aerosol data in from the central summer Arctic taken over the course of 18 yr from 1991 to 2008 do not show systematic year-to-year changes, albeit substantial interannual variations. Besides the limited extent of the data several causes may be responsible for these findings. The processes controlling concentrations and particle size distribution of the aerosol over the central Arctic perennial pack ice area, north of 80°, may not have changed substantially during this time. Environmental changes are still mainly effective in the marginal ice zone, the ice-free waters and continental rims and have not propagated significantly into the central Arctic yet where they could affect the local aerosol and its sources. The analysis of meteorological conditions of the four expedition summers reveal substantial variations which we see as main causes of the measured variations in aerosol parameters. With combined lognormal fits of the hourly number size distributions of the four expeditions representative mode parameters for the summer aerosol in the central Arctic have been calculated. The combined aerosol statistics discussed in the present paper provide comprehensive physical data on the summer aerosol in the central Arctic. These data are the only surface aerosol information from this region

    Out of Africa: High aerosol concentrations in the upper troposphere over Africa

    Get PDF
    International audienceIn the year 2000, six flights (three southbound and three northbound) of the CARIBIC project were conducted between Germany and two destinations in the southern hemisphere (Windhoek, Namibia and Cape Town, South Africa). In the present report, results on particle number concentrations are discussed in three size ranges (>4 nm, >12 nm, and >18 nm particle diameter) during the unique transequatorial Africa flights. The flights covered a total of about 80 h in May, July, and December. Thus, no claim can be made for long-term representativeness of the aerosol data. Nevertheless, they are the first upper systematic tropospheric transequatorial aerosol profiles over Africa. The average aerosol results show a broad maximum, roughly symmetrical to the equator, which compares well in latitudinal extent to a maximum of CO concentrations measured on the same flights. This export of continental surface aerosol to the upper troposphere will be dispersed on a global scale both with the easterly flow near the equator and with the westerlies in the adjacent subtropical regions. There was strong evidence of recent new particle formation before aerosol arrival at flight level, in particular during the time periods between 9:00 and 13:00 local time over Africa. Direct and indirect climate effects of the respective particulate matter remain to be investigated by future flights with the ongoing extension of the CARIBIC payload towards size-resolved measurements above 100 nm particle diameter. At the same time global chemical transport models and aerosol dynamics models need to be extended to be able to reproduce the CARIBIC findings over Africa

    Aerosol particle number size distributions and particulate light absorption at the ZOTTO tall tower (Siberia), 2006–2009

    Get PDF
    This paper analyses aerosol particle number size distributions, particulate absorption at 570 nm wavelength and carbon monoxide (CO) measured between September 2006 and January 2010 at heights of 50 and 300 m at the Zotino Tall Tower Facility (ZOTTO) in Siberia (60.8° N; 89.35° E). Average number, surface and volume concentrations are broadly comparable to former studies covering shorter observation periods. Fits of multiple lognormal distributions yielded three maxima in probability distribution of geometric mean diameters in the Aitken and accumulation size range and a possible secondary maximum in the nucleation size range below 25 nm. The seasonal cycle of particulate absorption shows maximum concentrations in high winter (December) and minimum concentrations in mid-summer (July). The 90th percentile, however, indicates a secondary maximum in July/August that is likely related to forest fires. The strongly combustion derived CO shows a single winter maximum and a late summer minimum, albeit with a considerably smaller seasonal swing than the particle data due to its longer atmospheric lifetime. Total volume and even more so total number show a more complex seasonal variation with maxima in winter, spring, and summer. A cluster analysis of back trajectories and vertical profiles of the pseudo-potential temperature yielded ten clusters with three levels of particle number concentration: Low concentrations in Arctic air masses (400–500 cm−3), mid-level concentrations for zonally advected air masses from westerly directions between 55° and 65° N (600–800 cm−3), and high concentrations for air masses advected from the belt of industrial and population centers in Siberia and Kazakhstan (1200 cm−3). The observational data is representative for large parts of the troposphere over Siberia and might be particularly useful for the validation of global aerosol transport models
    • 

    corecore