2,441 research outputs found

    Constraint on the solar Δm2\Delta m^2 using 4,000 days of short baseline reactor neutrino data

    Full text link
    There is a well known 2σ\sigma tension in the measurements of the solar Δm2\Delta m^2 between KamLAND and SNO/Super-KamioKANDE. Precise determination of the solar Δm2\Delta m^2 is especially important in connection with current and future long baseline CP violation measurements. Reference \cite{Seo:2018rrb} points out that currently running short baseline reactor neutrino experiments, Daya Bay and RENO, can also constrain solar Δm2\Delta m^2 value as demonstrated by a GLoBES simulation with a limited systematic uncertainty consideration. In this work, the publicly available data, from Daya Bay (1,958 days) and RENO (2,200 days) are used to constrain the solar Δm2\Delta m^2. Verification of our method through Δmee2\Delta m^2_{ee} and sin⁥2Ξ13\sin^2 \theta_{13} measurements is discussed in Appendix A. Using this verified method, reasonable constraints on the solar Δm2\Delta m^2 are obtained using above Daya Bay and RENO data, both individually and combined. We find that the combined data of Daya Bay and RENO set an upper limit on the solar Δm2\Delta m^2 of 18 ×10−5\times 10^{-5} eV2^2 at the 95% C.L., including both systematic and statistical uncertainties. This constraint is slightly more than twice the KamLAND value. As this combined result is still statistics limited, even though driven by Daya Bay data, the constraint will improve with the additional running of this experiment.Comment: 8 pages, 6 figures, 2 tables. This paper is a follow up of a Monte Carlo study reported in arXiv:1808.09150 by two of the authors. The current paper uses actual data from Daya Bay and RENO that was not previously available and this is the 1st "combined" result using this new experimental data. A new figure is added. Some modifications of the tex

    Modeling the reconstructed BAO in Fourier space

    Get PDF
    The density field reconstruction technique, which was developed to partially reverse the nonlinear degradation of the Baryon Acoustic Oscillation (BAO) feature in the galaxy redshift surveys, has been successful in substantially improving the cosmology constraints from recent galaxy surveys such as Baryon Oscillation Spectroscopic Survey (BOSS). We estimate the efficiency of the reconstruction method as a function of various reconstruction details. To directly quantify the BAO information in nonlinear density fields before and after reconstruction, we calculate the cross-correlations (i.e., propagators) of the pre(post)-reconstructed density field with the initial linear field using a mock galaxy sample that is designed to mimic the clustering of the BOSS CMASS galaxies. The results directly provide the BAO damping as a function of wavenumber that can be implemented into the Fisher matrix analysis. We focus on investigating the dependence of the propagator on a choice of smoothing filters and on two major different conventions of the redshift-space density field reconstruction that have been used in literature. By estimating the BAO signal-to-noise for each case, we predict constraints on the angular diameter distance and Hubble parameter using the Fisher matrix analysis. We thus determine an optimal Gaussian smoothing filter scale for the signal-to-noise level of the BOSS CMASS. We also present appropriate BAO fitting models for different reconstruction methods based on the first and second order Lagrangian perturbation theory in Fourier space. Using the mock data, we show that the modified BAO fitting model can substantially improve the accuracy of the BAO position in the best fits as well as the goodness of the fits.Comment: 21 pages, 7 figures, 1 table. Minor revisions. Matches version accepted by MNRA

    Improved forecasts for the baryon acoustic oscillations and cosmological distance scale

    Get PDF
    We present the cosmological distance errors achievable using the baryon acoustic oscillations as a standard ruler. We begin from a Fisher matrix formalism that is upgraded from Seo & Eisenstein (2003). We isolate the information from the baryonic peaks by excluding distance information from other less robust sources. Meanwhile we accommodate the Lagrangian displacement distribution into the Fisher matrix calculation to reflect the gradual loss of information in scale and in time due to nonlinear growth, nonlinear bias, and nonlinear redshift distortions. We then show that we can contract the multi-dimensional Fisher matrix calculations into a 2-dimensional or even 1-dimensional formalism with physically motivated approximations. We present the resulting fitting formula for the cosmological distance errors from galaxy redshift surveys as a function of survey parameters and nonlinearity, which saves us going through the 12-dimensional Fisher matrix calculations. Finally, we show excellent agreement between the distance error estimates from the revised Fisher matrix and the precision on the distance scale recovered from N-body simulations.Comment: Submitted to ApJ, 21 pages, LaTe

    Galaxy Bias and its Effects on the Baryon Acoustic Oscillations Measurements

    Full text link
    The baryon acoustic oscillation (BAO) feature in the clustering of matter in the universe serves as a robust standard ruler and hence can be used to map the expansion history of the universe. We use high force resolution simulations to analyze the effects of galaxy bias on the measurements of the BAO signal. We apply a variety of Halo Occupation Distributions (HODs) and produce biased mass tracers to mimic different galaxy populations. We investigate whether galaxy bias changes the non-linear shifts on the acoustic scale relative to the underlying dark matter distribution presented by Seo et al (2009). For the less biased HOD models (b < 3), we do not detect any shift in the acoustic scale relative to the no-bias case, typically 0.10% \pm 0.10%. However, the most biased HOD models (b > 3) show a shift at moderate significance (0.79% \pm 0.31% for the most extreme case). We test the one-step reconstruction technique introduced by Eisenstein et al. (2007) in the case of realistic galaxy bias and shot noise. The reconstruction scheme increases the correlation between the initial and final (z = 1) density fields achieving an equivalent level of correlation at nearly twice the wavenumber after reconstruction. Reconstruction reduces the shifts and errors on the shifts. We find that after reconstruction the shifts from the galaxy cases and the dark matter case are consistent with each other and with no shift. The 1-sigma systematic errors on the distance measurements inferred from our BAO measurements with various HODs after reconstruction are about 0.07% - 0.15%.Comment: Accepted by ApJ. 21 pages, 10 figure

    Probing Dark Energy with Baryonic Acoustic Oscillations from Future Large Galaxy Redshift Surveys

    Full text link
    We show that the measurement of the baryonic acoustic oscillations in large high redshift galaxy surveys offers a precision route to the measurement of dark energy. The cosmic microwave background provides the scale of the oscillations as a standard ruler that can be measured in the clustering of galaxies, thereby yielding the Hubble parameter and angular diameter distance as a function of redshift. This, in turn, enables one to probe dark energy. We use a Fisher matrix formalism to study the statistical errors for redshift surveys up to z=3 and report errors on cosmography while marginalizing over a large number of cosmological parameters including a time-dependent equation of state. With redshifts surveys combined with cosmic microwave background satellite data, we achieve errors of 0.037 on Omega_x, 0.10 on w(z=0.8), and 0.28 on dw(z)/dz for cosmological constant model. Models with less negative w(z) permit tighter constraints. We test and discuss the dependence of performance on redshift, survey conditions, and fiducial model. We find results that are competitive with the performance of future supernovae Ia surveys. We conclude that redshift surveys offer a promising independent route to the measurement of dark energy.Comment: submitted to ApJ, 24 pages, LaTe

    High-precision predictions for the acoustic scale in the non-linear regime

    Full text link
    We measure shifts of the acoustic scale due to nonlinear growth and redshift distortions to a high precision using a very large volume of high-force-resolution simulations. We compare results from various sets of simulations that differ in their force, volume, and mass resolution. We find a consistency within 1.5-sigma for shift values from different simulations and derive shift alpha(z) -1 = (0.300\pm 0.015)% [D(z)/D(0)]^{2} using our fiducial set. We find a strong correlation with a non-unity slope between shifts in real space and in redshift space and a weak correlation between the initial redshift and low redshift. Density-field reconstruction not only removes the mean shifts and reduces errors on the mean, but also tightens the correlations: after reconstruction, we recover a slope of near unity for the correlation between the real and redshift space and restore a strong correlation between the low and the initial redshifts. We derive propagators and mode-coupling terms from our N-body simulations and compared with Zeldovich approximation and the shifts measured from the chi^2 fitting, respectively. We interpret the propagator and the mode-coupling term of a nonlinear density field in the context of an average and a dispersion of its complex Fourier coefficients relative to those of the linear density field; from these two terms, we derive a signal-to-noise ratio of the acoustic peak measurement. We attempt to improve our reconstruction method by implementing 2LPT and iterative operations: we obtain little improvement. The Fisher matrix estimates of uncertainty in the acoustic scale is tested using 5000 (Gpc/h)^3 of cosmological PM simulations from Takahashi et al. (2009). (abridged)Comment: Revised to match the version in print: a new figure (figure 6) is added and Section 5 (and figure 8) is revised to include more details. 19 emulated apj pages with 13 figures and 3 table

    Passive Evolution of Galaxy Clustering

    Full text link
    We present a numerical study of the evolution of galaxy clustering when galaxies flow passively from high redshift, respecting the continuity equation throughout. While passive flow is a special case of galaxy evolution, it allows a well-defined study of galaxy ancestry and serves as an interesting limit to be compared to non-passive cases. We use dissipationless N-body simulations, assign galaxies to massive halos at z=1 and z=2 using various HOD models, and trace these galaxy particles to lower redshift while conserving their number. We find that passive flow results in an asymptotic convergence at low redshift in the HOD and in galaxy clustering on scales above ~3Mpc/h for a wide range of initial HODs. As galaxies become less biased with respect to mass asymptotically with time, the HOD parameters evolve such that M1/Mm decreases while alpha converges toward unity, where Mm is the characteristic halo mass to host a central galaxy, M1 is the halo mass to host one satellite galaxy, and alpha is the power-law index in the halo-mass dependence of the average number of satellites per halo. The satellite populations converge toward the Poisson distribution at low redshift. The convergence is robust for different number densities and is enhanced when galaxies evolve from higher redshift. We compare our results with the observed LRG sample from Sloan Digital Sky Survey that has the same number density. We claim that if LRGs have experienced a strict passive flow, their should be close to a power law with an index of unity in halo mass. Discrepancies could be due to dry galaxy merging or new members arising between the initial and the final redshifts. The spatial distribution of passively flowing galaxies within halos appears on average more concentrated than the halo mass profile at low redshift. (abridged)Comment: Accepted for publication in ApJ. 22 emulated apj pages with 15 figures and 4 table
    • 

    corecore