
MNRAS 460, 2453–2471 (2016) doi:10.1093/mnras/stw1138
Advance Access publication 2016 May 13

Modeling the reconstructed BAO in Fourier space
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ABSTRACT
The density field reconstruction technique, which partially reverses the non-linear degradation
of the Baryon acoustic oscillation (BAO) feature in the galaxy redshift surveys, has been
successful in substantially improving the cosmology constraints from recent surveys such as
Baryon Oscillation Spectroscopic Survey (BOSS). We estimate the efficiency of the method
as a function of various reconstruction details. To directly quantify the BAO information in
non-linear density fields before and after reconstruction, we calculate the cross-correlations
(i.e. propagators) of the pre(post)-reconstructed density field with the initial linear field using
a mock sample that mimics the clustering of the BOSS galaxies. The results directly provide
the BAO damping as a function of wavenumber that can be implemented into the Fisher
matrix analysis. We focus on investigating the dependence of the propagator on a choice of
smoothing filters and on two major different conventions of the redshift-space density field
reconstruction that have been used in literature. By estimating the BAO signal to noise for each
case, we predict constraints on the angular diameter distance and Hubble parameter using the
Fisher matrix analysis. We thus determine an optimal Gaussian smoothing filter scale for the
signal-to-noise level of the BOSS CMASS. We also present appropriate BAO fitting models for
different reconstruction methods based on the first- and second-order Lagrangian perturbation
theory in Fourier space. Using the mock data, we show that the modified BAO fitting model
can substantially improve the accuracy of the BAO position in the best fits as well as the
goodness of the fits.

Key words: cosmological parameters – cosmology: observations – cosmology: theory –
distance scale – large-scale structure of Universe.

1 IN T RO D U C T I O N

Baryons acoustic oscillations (hereafter BAO) refer to primordial
sound waves that propagated in the hot plasma of photons and
baryons due to the interaction of gravity and photon pressure in
very early Universe. As the Universe expands and cools down, the
photons and baryons decoupled near the epoch of recombination
and the propagating sound waves subsequently stalled, leaving a
distinct statistical imprint in the distribution of matter on the scale
that corresponds to the distance the sound waves have travelled
before this epoch (i.e. sound horizon scale).

The BAO feature in the matter distribution reveals itself in the dis-
tribution of galaxies. Its observation has proven to be a powerful and
robust dark energy probe (see, e.g. Anderson et al. 2014). The com-
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parison between the observed BAO scale from the galaxy surveys
and the true physical sound horizon scale that can be independently
estimated from the cosmic microwave background data enables
mapping between the observational coordinates and the physical
coordinates; this mapping sensitively depends on the expansion
history and therefore dark energy properties (e.g. Eisenstein, Hu
& Tegmark 1998). The precision to which the BAO feature can be
measured, and consequently, the dark energy constraints obtained
from BAO measurements depend on the strength of the feature and
how well we can separate the BAO feature from the broad-band
power. Due to structure formation as well as the observational ef-
fect of redshift-space distortions, the BAO feature is expected to
become gradually degraded/damped with structure evolution such
that the feature is much weaker at low redshift where the expansion
of the Universe is mostly driven by dark energy (see, e.g. Jain &
Bertschinger 1994; Meiksin, White & Peacock 1999; Angulo et al.
2005; Seo & Eisenstein 2005; Springel et al. 2005; White 2005;
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Crocce & Scoccimarro 2006; Jeong & Komatsu 2006; Eisenstein,
Seo & White 2007a; Huff et al. 2007; Smith, Scoccimarro & Sheth
2007; Angulo et al. 2008; Crocce & Scoccimarro 2008; Matsubara
2008a,b; Seo et al. 2008; Takahashi et al. 2008; Taruya et al. 2009;
Tassev & Zaldarriaga 2012a).

Eisenstein et al. (2007b) has shown that a simple density field re-
construction scheme based on the linear continuity equation can
reverse a significant portion of the non-linear degradation and
reconstruct the BAO feature at low redshift. The method has
been extensively tested and has now become a standard tool for
analysing recent galaxy surveys (e.g. Seo et al. 2008; Noh, White &
Padmanabhan 2009; Padmanabhan, White & Cohn 2009; Seo et al.
2010; Mehta et al. 2011; Anderson et al. 2012, 2014; Padmanab-
han et al. 2012; White 2015; Cohn et al. 2016) (also see Tassev
& Zaldarriaga 2012b for optimizations). While the basic proce-
dure of BAO reconstruction is well established, the details that go
into reconstruction differ depending on literature. For example, the
reconstruction efficiency depends on the choice of the scale that
smooths the observed (and therefore noisy) non-linear density field
on small scales in order to make the continuity equation valid (e.g.
Padmanabhan et al. 2009; Seo et al. 2010; Mehta et al. 2011; Burden
et al. 2014; Achitouv & Blake 2015; Vargas-Magaña et al. 2014,
2015).

In particular, the original BAO reconstruction technique in
Eisenstein et al. (2007b) attempts to preserve the redshift-space dis-
tortion (RSD) signal (i.e. observational clustering distortions along
the line of sight due to the peculiar velocity field of galaxies, e.g.
Kaiser 1987) in the reconstructed density field in order to take ad-
vantage of the boosted signal relative to the shot noise, while the
convention in Padmanabhan et al. (2012) removes the RSD signal
during reconstruction, attempting to recover the isotropic cluster-
ing on large scales. As we will present in this paper, we expect
that the latter convention should more effectively sharpen the BAO
feature along the line of sight, reversing much of the damping due
to non-linear RSD. The final gain in terms of BAO signal to noise
also depends on the effect of the reconstruction process on the
component of the power spectrum that does not include the BAO
information, which would contribute to noise; this effect has not
been rigorously investigated. Burden et al. (2014) has tested these
two RSD conventions using dispersions of the Baryon Oscillation
Spectroscopic Survey (BOSS) Data Release 11 mock catalogs (600
mocks) and found no difference between the two methods, when
focusing on the spherically averaged BAO signal. Recently, Vargas-
Magaña et al. (2015) has also investigated such BAO reconstruction
details in correlation function measurements. Our analysis is differ-
ent from Burden et al. (2014) in that we inspect the angle-dependent
behaviour and our approach should in general suffer less sample
variance since the initial sample variance effect largely cancels out
when calculating the propagator. Our result will thus quantitatively
compare the underlying information content components between
the two methods, which expand and improve upon the results ob-
served in Burden et al. (2014).

In this paper, we estimate the efficiency of the reconstruction
method as a function of various reconstruction details using a hy-
brid of simulations and Fisher matrix analysis. To directly quantify
the BAO information in non-linear density fields before and after
reconstruction, we calculate the cross-correlations (propagators) of
the pre(post)-reconstructed density field with the initial linear field.
We do this using a mock galaxy sample that is designed to mimic
the clustering of the BOSS CMASS galaxies (stands for ‘constant
stellar mass galaxies’, White et al. 2011; Leauthaud et al. 2016;
Saito et al. 2016; Reid et al. 2016). Since both the initial density

field and the final density field are subject to the same initial random
fluctuations, this method suffers little sample variance and does not
require a large ensemble of simulations. The results directly provide
the BAO damping as a function of wavenumber that can be imple-
mented into the Fisher matrix analysis. We focus on investigating
the dependence of the propagator on a choice of smoothing filters
and on two different conventions of the redshift-space density field
reconstruction mentioned above. We also estimate the noise compo-
nent without the BAO signal, which we call ‘mode-coupling term’,
for post-reconstructed fields. Together we estimate the BAO signal
to noise for each case and predict constraints on the angular diame-
ter distance and Hubble parameter using the Fisher matrix analysis.
We provide an optimal smoothing filter scale for the signal-to-noise
level of the BOSS CMASS. We compare the final Fisher matrix
predictions with the current BOSS CMASS constraints.

Understanding the differences between the reconstruction con-
ventions is important not only for maximizing the gain given the
survey data, but also for correctly modeling the reconstructed BAO
feature to be used during the data analysis. For example, the BAO
feature from low-redshift galaxy surveys has been traditionally
modelled as a Gaussian damping of the BAO feature in the linear
power spectrum. The model has been shown to be a good approx-
imation for pre-reconstructed density field and post-reconstructed
density field (Seo et al. 2010) for the reconstruction convention
used in Eisenstein et al. (2007b) (i.e. retaining RSD). However, as
we will show in this paper, the Gaussian damping model is a poor
approximation for the density field reconstructed using the conven-
tion in Padmanabhan et al. (2012) (i.e. removing RSD) especially
if we are interested in the clustering along the line of sight in red-
shift space. The first-order Lagrangian perturbation theory (LPT)
model for the reconstructed BAO feature in real space has been
derived in Padmanabhan et al. (2009) and subsequently extended
in Noh et al. (2009) to include the second order terms as well as
the effects of galaxy bias. Recently, White (2015) has derived the
full first order LPT model for the reconstructed BAO in redshift-
space, for the correlation function and for both RSD conventions.
We follow Matsubara (2008b) and conduct a corresponding first
and second order LPT derivation for the BAO feature of the recon-
structed power spectrum and provide an effective, simple model
for both conventions. For the reconstruction convention based on
Padmanabhan et al. (2012), our model requires a modification to
the original Gaussian damping model.

We show that using the modified model significantly improves the
χ2 when compared to mock data sets. Without this modified model
we obtain large values of χ2, which could impact our judgement
of the goodness of fit, and also obtain systematically biased BAO
measurements. We will also show that using the modified model
can potentially improve the precisions of the measurement.

This paper is structured as follows. In Section 2, we outline the
density field reconstruction method and the details of the different
conventions we investigate in this paper. In Section 3, we summa-
rize the mock simulation we use. In Section 4, we introduce two
models of the BAO damping in the reconstructed density field as a
single element (the propagator) and discuss estimators of the noise
element (which we call the mode-coupling term). In Sections 5 and
6, we present the results of the mock analysis in terms of the BAO
signal and noise, that is, the propagators and mode-coupling com-
ponents as a function of the smoothing scale and the reconstruction
conventions. In Section 7, based on the simulated propagators and
mode-coupling contributions, we conduct the Fisher matrix analy-
sis to forecast BAO measurement errors in various cases. We also
conduct the BAO fitting on the mock simulation and compare with
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the Fisher forecasts. In Section 8, we conclude. In the appendix, we
provide the first- and second-order LPT derivations of the recon-
structed BAO in power spectra in redshift space, which motivate
our modified BAO fitting model.

2 D ENSITY FIELD RECONSTRUCTION

2.1 Basics

The outline of the density field reconstruction technique (hereafter,
BAO reconstruction) is presented originally in Eisenstein et al.
(2007b) and a more detailed description can be found in Mehta
et al. (2011). We briefly summarize it here. The Eulerian particle
position x can be mapped to a Lagrangian particle position q by the
displacement �:

x = q + �(x). (1)

The density field, δ, in Eulerian coordinates is transformed to the
uniform density field in Lagrangian coordinates through the Jaco-
bian, and the transformation in the linear order gives the familiar
continuity equation:

δ(x) = −∇x · �(x), (2)

which in Fourier space can be expressed as

�̃(k) = − ik
k2

δ̃(k), (3)

where k is the wave vector.
The idea of BAO reconstruction is to estimate the displace-

ment field due to structure growth and redshift-space distortions
based on the observed galaxy density field and displace the ob-
served galaxies back to their original positions to restore the linear
information.

In justification of estimating the displacement field using the
linear continuity equation, we damp the non-linearities on small
scales in the observed density field by applying the smoothing kernel
S(k) to the density field. Then, the estimated displacement field s̃(k)
is:

s̃(k) ≈ − ik
k2

δ̃nlS(k), (4)

where S(k) is traditionally given by

S(k) = exp
[−0.25k2�2

sm

]
. (5)

The impact of the smoothing scale �sm will be discussed in de-
tail later. Note that we follow the smoothing scale convention
from Padmanabhan et al. (2009); the smoothing scale conven-
tion �′

sm in Anderson et al. (2012) as well as Burden et al.
(2014) and Vargas-Magaña et al. (2015) is different from ours in
that �sm = √

2�′
sm.

2.2 Isotropic and anisotropic BAO reconstructions

In this subsection we compare the two main BAO reconstruction
conventions that have been used in the literature. The original BAO
reconstruction technique in Eisenstein et al. (2007b), Seo et al.
(2008), Seo et al. (2010), and Mehta et al. (2011) attempts to keep
the redshift-space distortion (RSD) signal in the reconstructed den-
sity field, while the convention of Padmanabhan et al. (2012) and
Anderson et al. (2014) attempts to remove the RSD signal during
the reconstruction. We term the former BAO convention that re-
stores RSD ‘anisotropic BAO reconstruction’ or ‘Rec-Ani’ and the

latter convention that removes RSD ‘isotropic BAO reconstruction’
or ‘Rec-Iso’.

Parameters that define the impact of RSD on the galaxy field
include

f ≡ d log(D)

d log(a)
, (6)

where D is the linear growth factor and a is the scale factor (a ≡
1/(1 + z)). On linear scales, RSD enhance the galaxy density field
by (Kaiser 1987)

δ̃s
g = (b + f μ2)δ̃r

m = b(1 + βμ2)δ̃r
m, (7)

where b is the linear galaxy bias, δ̃r
m is the real space dark matter

density field as a function of wave vector, δ̃s
g is the redshift space

galaxy density field and μ is the cosine of the angle between the
line of sight and the wave vector. It is useful to define the quantity
β = f/b.

(i) Isotropic BAO reconstruction – ‘Rec-Iso’ (e.g. Padmanabhan
et al. 2012; Anderson et al. 2014)
The real-space displacement field s̃r (k) is estimated from the ob-
served redshift-space density field δ̃s

nl(k) by;

s̃r (k) = − ik
k2

δ̃s
nl(k)

b(1 + βμ2)
S(k). (8)

The displacement field in configuration space is then derived by
Fourier-transforming s̃r (k);

s̃r (k)
Fourier Transform−−−−−−−−→ sr (x). (9)

The two density fields δd (x) and δs(x) are then derived, respectively
by;

δd : displacing the galaxies by ss = sr + f (sr · ẑ) ẑ

δs : displacing the random particles by ss = sr , (10)

where ẑ is the unit vector pointing along the line of sight and f is
the growth rate.

(ii) Anisotropic BAO reconstruction – ‘Rec-Ani’ (e.g. Eisenstein
et al. 2007b; Seo et al. 2008, 2010; Mehta et al. 2011)
The procedure is similar except for;

s̃r (k) = − ik
k2

δ̃s
nl(k)

b
S(k)

s̃r (k)
Fourier Transform−−−−−−−−→ sr (x) (11)

δd : displacing the galaxies by ss = sr + f − β

1 + β
(sr · ẑ) ẑ

δs : displacing the random particles by ss = sr + f − β

1 + β
(sr · ẑ) ẑ

(12)

The final reconstructed field is derived by

δrec(x) = δd (x) − δs(x). (13)

As discussed in Padmanabhan et al. (2012), δd has a re-
stored small-scale information and δs has a restored large-scale
information.
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To the lowest order, the displacement field that is responsi-
ble for the observed redshift-space density field can be thought

of ∼−(1 + f )/(1 + β) ik
k2

δ̂s
nl
b

S(k) along the line of sight and

∼ −1/(1 + β) ik
k2

δ̂s
nl
b

S(k) across the line of sight. Note that both
conventions described above displace the real galaxy particles ap-
proximately by this estimated redshift-space displacement field,
thereby attempting to correct for RSD on small scales, while each
convention makes a different choice on displacing random (ref-
erence) particles. The anisotropic BAO reconstruction displaces
random particles with the estimated redshift-space displacement
field thereby boosting the large-scale clustering in δs along the
line of sight, while the isotropic BAO reconstruction displaces the
random particles without the extra factor of (1 + f), attempting
to correct for the anisotropic redshift distortions on large scales.
While the former has the boosted amplitude along the line of sight,
the latter has effectively a sharper BAO peak along the line of
sight.

3 MO C K DATA

We utilize the mock galaxy data (hereafter, ‘runA’ mocks) used
in White et al. (2011) that mimic the observed galaxy clustering
of the BOSS-CMASS data. We use this mock simulation, first to
estimate the cross-correlations between the initial and the final den-
sity fields (i.e. propagators) for various cases and later to simulate
the BAO fitting using different fitting models. The BOSS CMASS
data correspond to a signal-to-noise ratio of nP0.2 ∼ 1.8 where n
is the average number density, 1/n is the corresponding shot noise
estimate, and P0.2 is the amplitude of power at k = 0.2 h Mpc−1

without redshift-space distortions. As a caveat, the assumption of
nP0.2 ∼ 1.8 breaks down at the very high redshift end of the BOSS
CMASS data, as shown in table 2 of Font-Ribera et al. (2014). The
mock contains 1203 407 mock galaxies within a cosmic volume
of 1.53 h−3 Gpc3, i.e. n̄ = 3.566 × 10−4 h3 Mpc−3, which gives a
shot noise level of 2804 h−3 Mpc3 and nP0.2 ∼ 2, i.e. close to the
signal to noise of the BOSS CMASS data.1 The redshift of the
mock galaxies is 0.55(for the BOSS CMASS data, zeff = 0.57). We
assume b = 2 and f = 0.74 for the analysis in this paper. Out of the
total 20 runA mocks from White et al. (2011), only one mock has
its full initial conditions in Fourier space stored. We use this mock
to calculate propagators. Despite our using only one simulation,
the sample variance is substantially reduced because the propagator
calculation involves a division of the final density field with the
initial density field and both fields are subject to the same random
seed. The remaining fluctuations due to a fine k binning are re-
duced by applying Savitzky–Golay smoothing filtering (Savitzky &
Golay 1964). For testing the BAO fitting models, we use all 20 mock
simulations.

4 MO D E L I N G T H E BAO I N F O R M ATI O N
IN THE MEASURED POW ER SPECTRUM

4.1 Estimating the signal

We make a quantitative estimate of the BAO signal, which we
will later utilize to predict the precision of the BAO measure-

1 Note that Burden et al. (2014) assumes a somewhat lower signal to noise
for BOSS CMASS. They assume the weighted effective number density
n̄ = 2.196 × 10−4 h3 Mpc−3, i.e. a shot noise level of 4553 h−3 Mpc3.

ments. We can directly measure the BAO signal by deriving the
cross-correlation between the initial, linear density field and the
final density field, often dubbed as the ‘propagator’(e.g. Crocce &
Scoccimarro 2006, 2008; Taruya & Hiramatsu 2008; Taruya et al.
2009). For biased tracres in redshift space, we normalize the prop-
agator to be:

C(k, μ, zo) = 1

bPlin(k, zo)

〈
δ̂lin(k, zo)δ̂∗(k′, zo)

〉
, (14)

where δ̂lin(k, zo) and Plin(k, zo) are, respectively, the linear theory
density field and the corresponding power spectrum in real space
that are scaled to zo = 0.55 using the linear growth function; δ̂(k, zo)
is the observed galaxy density field or any density field of interest
at zo = 0.55 in Fourier space before or after BAO reconstruction.
The normalization of C(k, μ) is such that it would converge to
unity in real space and to (1 + βμ2) in redshift-space when δ̂(k, zo)
contains the same information as the initial, linear density field at
low k. In linear theory the propagator is equal to (1 + βμ2). As the
BAO feature is progressively damped during non-linear structure
growth and redshift-space distortions, C(k, μ) gradually decrease
with increasing k.

4.2 Modeling the propagator

The propagator estimates the BAO damping as a function of
wavenumber and therefore has been useful for calculating the ex-
pected precisions of a BAO survey as well as constructing a reason-
able fitting model for the observed BAO measurement. A Gaussian
damping model in Fourier space (equivalently, a Gaussian convo-
lution for the correlation functions in configuration space) has been
shown to be a fairly reasonable description of the propagator for
the spherically averaged power spectrum before and after recon-
struction and in real and redshift space (e.g. Seo et al. 2010) and
indeed has been widely used in BAO fitting models when analysing
observational data.

The production of galaxy catalogues covering ever greater cosmic
volume enabled the two-dimensional standard ruler test that mea-
sures the BAO scale both along and across the line of sight. Note that
the test of propagators in redshift space after BAO reconstruction
conducted in Seo et al. (2010) is not only for a spherically averaged
power spectrum, but also assuming the anisotropic BAO reconstruc-
tion convention (‘Rec-Ani’). Meanwhile, the default reconstruction
used within the BOSS collaboration is the isotropic BAO recon-
struction convention (‘Rec-Iso’, e.g. Anderson et al. 2014). We first
study the dependence of the propagator on such RSD conventions
and then also study their dependence on the smoothing scale. We
examine the validity of the Gaussian BAO damping model in two
dimensions, i.e. along the line of sight and across the line of sight.
As a reminder, the Gaussian BAO damping model for a propagator
is written as;

CG(k, μ, z) = (1 + βμ2) exp

[
−k2(1 − μ2)�2

xy

4
− k2μ2�2

z

4

]
,

(15)

where �xy and �z represent the characteristic BAO damping
scales across the line of sight and along the line of sight,
respectively.

As will be probed later, we find that the two-dimensional Gaus-
sian BAO damping model is no longer a good model for the isotrop-
ically reconstructed field, especially when using a large smoothing
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length during density field reconstruction. We test the following,
modified Gaussian BAO damping model for the isotropic recon-
struction (Ross et al., in preparation).

CMG(k, μ, z) =

(1 + βμ2(1 − S(k))) exp

[
−k2(1 − μ2)�2

xy

4
− k2μ2�2

z

4

]
. (16)

In Appendix A1 (in equation A26), we show that this form is a
close approximation to the first-order (tree-level) LPT formalism
based on Padmanabhan et al. (2009), Noh et al. (2009), Matsubara
(2008a), Matsubara (2008b). The corresponding, first order deriva-
tion for the reconstructed BAO in configuration space is presented
in White (2015). To be exact, White (2015) presents the full Zel-
dovich approximation rather than the tree-level derivations for the
reconstructed correlation functions for the two BAO reconstruc-
tion conventions we discuss in this paper. In Appendix B, we also
show the second order (one-loop level) LPT derivations for the re-
constructed BAO feature in power spectra in redshift space that
extends the real-space results in Noh et al. (2009) and find that
the densify field before reconstruction is better described by sec-
ond order LPT, while the density field after reconstruction seems
to be follow first order LPT. We suspect that this happens partly
because the assumptions during the BAO reconstruction such as the
smoothed non-linear density field being treated approximately as
the smoothed linear density field breaks down when we consider
higher order terms and/or because we truncate the second-order
terms at one-loop level.

4.3 Estimating the noise

We consider the non-linear power spectrum to be the sum of the sig-
nal term C(k, μ, z)2Plin(k, z) that contains the BAO information and
the rest of the term that does not directly relate to the BAO informa-
tion. The latter is often called the mode-coupling term (Crocce &
Scoccimarro 2008; Matsubara 2008a) and we use PMC to represent
it:

Pnl(k, μ, zo) = C(k, μ, zo)2Plin(k, zo) + PMC(k, μ, zo). (17)

The mode-coupling term includes shot noise as well as a very weak,
phase-shifted BAO remnant which introduces a small systematic
bias to the BAO measurement depending on the relative amplitude
of this term. The systematic bias is effectively removed by BAO
reconstruction (e.g. Seo et al. 2008; Padmanabhan & White 2009)
and we will ignore this aspect of PMC in this paper. Instead, we are
interested in quantifying the noise contribution from PMC.

The measurement noise of a power spectrum is proportional to
the amplitude of the measured power spectrum itself, Pnl, ignoring
the tri-spectrum contribution. When the signal we want to measure
is the BAO information, i.e., C(k, μ, z)2Plin(k, z), a larger PMC

therefore means a larger noise level. In summary, the signal-to-
noise ratio of the BAO measurement with the post-reconstructed
power spectrum would increase as the damping effect in C(k, μ,
z) decreases (i.e. as approaches to 1 + βμ2) and as the amplitude
of PMC decreases. In the next section, we investigate how C(k, μ)
and PMC change depending on which BAO reconstruction conven-
tion is used. We will eventually incorporate these results into the
Fisher matrix analysis and predict the precision of BAO distance
measurements.

5 R E S U LT S : T H E BAO SI G NA L

In this section, we use the runA mock simulations introduced in
Section 3 to study the propagator (as an indicator for the BAO sig-
nal strength) and PMC (as noise) before and after reconstruction as a
function of RSD convention and smoothing scale. The dependence
of the reconstructed BAO on these various details has been investi-
gated in the literature, but in a way that is subject to a large sample
variance, i.e. in terms of means and standard deviations of the final
BAO constraints from mock simulations (Padmanabhan et al. 2012;
Burden et al. 2014; Vargas-Magaña et al. 2015). Such analysis re-
quires a very large ensemble of simulations to reduce the sample
variance on the error estimates and could be sensitive to the details
in the fitting procedure. On the other hand, calculating propagators
does not require a large number of mocks and presents the BAO
signal as a function of scale in a way that can be directly translated
to Fisher matrix calculations. The propagator has also proven to be
useful for the construction of models to extract BAO information
from clustering measurements.

5.1 Varying the anisotropy convention

We first compare propagators for the two different RSD-induced
anisotropy conventions discussed in Section 2.2: the original,
anisotropic reconstruction (Rec-Ani, equation 12) and the isotropic
reconstruction (Rec-Iso, equation 10). As explained earlier, both
methods differ in several details, but the main difference is whether
or not to restore the linear redshift-space distortions in displacing
the random particles.

The left-hand panel of Fig. 1 shows the propagator of the mock
CMASS galaxy density field before (black) and after reconstruction
(red lines for Rec-Iso and blue dashed lines for Rec-Ani) with �sm

= 14 h−1 Mpc, which is an intermediate smoothing scale between
our estimated optimal smoothing scale of 10 h−1 Mpc (in Section 8)
and 20 h−1 Mpc that has been used in previous BOSS analysis (An-
derson et al. 2014). The top panel shows modes across the line of
sight (defined by μ = 0 − 0.05) and the bottom panel shows modes
along the line of sight (defined by μ = 0.95–1). As expected, the
propagator for the pre-reconstructed field in black, asymptotically
approaches unity at small k for the modes across the line of sight
and approaches (1 + βμ2) for the modes along the line of sight. The
propagator for the post-reconstructed field should converge to unity
at small k in both directions in the isotropic reconstruction con-
vention, while they should converge to 1 + βμ2 in the anisotropic
convention. The figures in the left-hand panel indeed show such a
behaviour. For the isotropic reconstruction case, it is evident that the
propagator overshoots above unity in the intermediate scales along
the line of sight, which is consistent with the effect of 1 − S(k) in
equation (16). From the line-of-sight propagator curves in the lower
left panel, one can see that C(k = 0.3 h Mpc−1)/C(k = 0 h Mpc−1)
will be greater in the case of the isotropic reconstruction (i.e.
(1 + β(1 − S(k))) exp(−�2

nlk
2/4)|k=0.3 h Mpc−1 ) in comparison to the

anisotropic case (i.e. exp(−�2
nlk

2/4)|k=0.3 h Mpc−1 ), which implies
that the restored BAO feature from the isotropic case would cor-
respond to smaller effective damping compared to the anisotropic
reconstruction case albeit the very similar �nl values in both cases.
The question of which convention would be more efficient in terms
of the BAO signal to noise would also depend on the noise compo-
nent in each case, which will be investigated in Section 6.

Right-hand panels show the corresponding propagators for the
displaced random field alone (to be exact, the negative of the dis-
placed random field, −δs, in equation (13); the blue and red thinner
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Figure 1. Propagators of mock CMASS galaxy density field using different conventions for how RSD-induced anisotropy is treated in the reconstruction, for
a fixed smoothing length �sm = 14 h−1 Mpc. The black line shows the pre-reconstructed density field; the red lines show the post-reconstructed field with
the isotropic reconstruction (corresponds to the magenta lines in Fig. 2) and blue dashed lines show the anisotropic reconstruction. The left-hand panels show
propagators for δrec and the right-hand panels show the individual density fields, i.e. the negative of the displaced random field (−δs, the two thinner curves
peaking at low k) and displaced galaxy density field (δd, the two thicker curves peaking at high k) that forms the reconstructed density field (i.e. in the left-hand
panels) after mutual addition. Dotted lines show the Gaussian damping model with �nl(k = 0.3 h Mpc−1): the red dotted line shows the modified Gaussian
damping model while the blue dotted line shows the original Gaussian damping model.

curves peaking at low k) and the propagators for the displaced
galaxy density field alone (δd in equation (13); the blue and red
thicker curves peaking at high k) that together comprise the recon-
structed density field shown in the left-hand panels (δrec = δd −
δs, equation 13). We find that the difference in damping is mainly
caused by the contribution from the displaced random field δs be-
ing suppressed relative to the contribution from the displaced mock
galaxy field δd in the isotropic reconstruction. Since the contribu-
tion from δd is very similar in the two conventions at large k, so is
the propagator of the final field δrec at large k. Across the line of
sight (top panels), both conventions produce almost identical prop-
agators, which is expected as RSD should not affect these modes.

In the left-hand panels of Fig. 1, we over-plot the correspond-
ing Gaussian damping models (equation (15) for black and blue
and equation (16) for red lines) in dotted lines that are estimated
based on the propagator values at k = 0.3 h Mpc−1; our choice of
k = 0.3 h Mpc−1 is made based on the visual inspections.2 Note

2 I.e. it is done by visually inspecting the overall agreement between the
Gaussian model anchored at different choices of k values and the measured
propagator, rather than assuming errors on the measured propagators and
thereby deriving the best-fitting Gaussian models.

that in both directions the Gaussian damping model describes the
propagator fairly well for the pre-reconstructed field (black lines).
�nl values labeled in the figure correspond to the damping scales
for the dotted lines and we interpret these values at μ = 0–0.05
(top panels) and μ = 0.95–1 (bottom panels) to be �xy and �z in
equation (15) (or 16), respectively.

We find that the propagators after the anisotropic reconstruction
are well modelled by the default Gaussian damping model, while the
isotropic reconstruction is better modelled by the modified Gaussian
model, when focusing on the line-of-sight direction (μ∼ 1). Despite
the different forms, the derived �nl values at μ ∼ 1 are almost
identical in the two cases. For example, the measured �z values as
shown in Table 1 are 5.6 h−1 Mpc and 5.7 h−1 Mpc in the case of
isotropic and the anisotropic case, respectively, when reconstructed
with �sm = 14 h−1 Mpc. This implies the approximate forms from
LPT in the Appendix (equation A37 and equation A26) work well.
Again note that the 1 − S(k) in equation (16) makes the effective
BAO damping after reconstruction smaller in the isotropic case
albeit almost the same �nl.

Across the line of sight, i.e., when μ ∼ 0, the modified Gaus-
sian damping model of course asymptotically becomes the Gaus-
sian damping model. The red solid and dotted lines in the top left
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Table 1. Fisher matrix estimates for the BOSS DR12 CMASS BAO constraints for various cases. We assume the effective survey volume of
2.36 h−3 Gpc3 and z = 0.55. ‘Rec-Iso’ refers to the isotropic reconstruction case (i.e. removing RSD) and ‘Rec-Ani’ refers to the anisotropic
reconstruction case (i.e. keeping RSD).

�sm �xy( h−1 Mpc) �z( h−1 Mpc) A1( h−3 Mpc3) A2( h−3 Mpc3) σDA(z)(per cent) σH(z)(per cent) σDV
( per cent)

Pre-Rec 0 5.9 10.4 1193 4968 1.50 2.86 1.05

Rec-Iso 10 2.0 5.1 1681 923 0.81 1.31 0.54
Rec-Iso 14 2.4 5.6 1463 1603 0.87 1.44 0.58
Rec-Iso 20 2.9 6.2 1277 2420 0.96 1.63 0.65

Rec-Ani 14 2.4 5.7 1493 1573 0.86 1.38 0.57
Rec-Ani 20 2.9 6.2 1438 2232 0.95 1.57 0.63

panel apparently show that such Gaussian damping model is a poor
description on small scales. We nevertheless note that the model
reproduces the near unity convergence for k ≤ 0.3 h Mpc−1 which
is the wavenumber range we use in the BAO analysis and therefore
do not further modify the model to improve its behaviour at μ ∼ 0
when calculating Fisher matrix.

In summary, we showed that the anisotropic reconstruction in-
deed has a boosted signal normalization on large scales along the
line of sight, while the isotropic reconstruction convention has an
advantage of smaller effective damping along the line of sight. The
smaller damping in the isotropic case, however, is caused by a rel-
ative suppression of the displaced random particles on large scales.
That is, the curve of propagator C(k) on smaller scales (caused by
the displaced galaxies) is almost identical in both cases. If we as-
sume the same level of noise for the post-reconstructed density field
in both reconstruction conventions, this would imply more BAO in-
formation in the anisotropic case, despite the shallower damping
in the isotropic reconstruction. However, we expect that not only
the signal but also the noise would have been boosted by the same
factor in the anisotropic case. In Section 6, we therefore check the
noise level of the reconstructed density field in both conventions. As
a caveat, Anderson et al. (2014) used the default Gaussian damping
model when fitting for the BAO feature that was reconstructed using
the isotropic reconstruction. Ross et al. (in prep) and Beutler et al.
(in preparation) will utilize the modified Gaussian damping model,
and we expect these results will be included in the final BOSS anal-
yses (Anderson et al., in preparation); this paper demonstrates the
necessity for such update.

5.2 Dependence on the smoothing term

The effect of the smoothing term S(k) used to filter the non-linear
density field during reconstruction has been investigated in the
literature (e.g. Padmanabhan et al. 2009; Seo et al. 2010; Mehta
et al. 2011; Burden et al. 2014; Vargas-Magaña et al. 2014, 2015;
Achitouv & Blake 2015). We attempt to summarize those results in
what follows. First, it is expected that the effect would depend on
the extent of non-linearity (by affecting the validity of equation 4)
and shot noise. If our goal is optimally deriving the true S(k)δ̂(k)
where δ̂(k) is the true Fourier-space density field, S(k) should be
weighted with 1/[1 + nP(k)] (e.g. Seo & Hirata (2016)). White
(2010) analytically derived the expected efficacy of real-space BAO
reconstruction (in terms of the expected Gaussian damping of the
propagator) as a function of the smoothing length and shot noise
within the context of LPT; the paper predicts that the efficacy will
improve as shot noise decreases while such improvement starts to

saturate around nP0.2 ∼ 0.2-1.3 As a function of the smoothing
scale �sm, White (2010) predicts that the efficacy will be optimal
over a broad range of �sm, while the optimal range shifts to a larger
smoothing length for a noisier field. In redshift space, this real-space
prediction could be applied to approximately predict the behaviour
for the modes across the line of sight.

In this subsection, we focus on the isotropic reconstruction con-
vention and test the reconstruction efficacy in redshift space as a
function of the smoothing scale.4 We consider the signal-to-noise
level of BOSS CMASS.

The left-hand panels of Fig. 2 show the propagators of our mock
CMASS galaxy density field before (black) and after (colored lines)
the isotropic reconstruction as a function of smoothing length �sm:
red, magenta, and blue correspond to �sm = 10, 14, and 20 h−1 Mpc,
respectively. The figure shows that the propagators for the post-
reconstructed field depend on the smoothing length and that the
behaviours in the two directions are different. For the modes across
the line of sight (top panel), they all asymptotically approach unity
on large scales (small k) while a smaller smoothing length causes a
convergence at slighter larger k, i.e. a more efficient reconstruction.
For the modes along the line of sight (bottom panel), as evident in
the blue line with �sm = 20 h−1 Mpc relative to the red line with
�sm = 10 h−1 Mpc, the overshooting above unity in the intermediate
scales becomes more severe for a larger �sm; the original Gaussian
damping model (equation 15) is a worse description for a larger �sm.
Red, magenta, blue dotted lines show the corresponding modified
Gaussian damping model (equation 16) for the post-reconstructed
density field; we derive �xy = 2.0, 2.4, and 2.9 h−1 Mpc and �z

= 5.1, 5.6, and 6.2 h−1 Mpc (in equation 16) for them, respec-
tively, showing a smaller BAO damping scale when reconstructed
with a smaller smoothing scale. That is, when �sm changes from
20 h−1 Mpc to 10 h−1 Mpc, the decrease in the BAO damping scale
is 45 per cent across the line of sight, while it is 21 per cent along
the line of sight; decreasing the smoothing scale is less effective
along the line of sight.

The right-hand panels of Fig. 2 show the individual contributions
from δd and −δs. Using a smaller smoothing length (e.g. the red
line rather than the blue line) increases the contribution from δs,
since the reconstructed displacement field has more information
extending to smaller scales, and shifts the contribution from δd to
smaller scales. In the lower right panel, note the overshoot above
unity by the blue δd line.

3 White (2010) quotes n̄ = 10−4 h−3 Mpc3 for b = 1 for the saturation point.
Assuming P(k = 0.2) ∼ 2000 h−3 Mpc3, this gives nP0.2 ∼ 0.2.
4 Some examples of the anisotropic reconstruction are presented in Seo et al.
(2010).
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Figure 2. Left-hand panels: propagators of the mock CMASS galaxy density field before (black) and after reconstruction as a function of smoothing length
�sm: red, magenta, and blue correspond to �sm = 10, 14, 20 h−1 Mpc. The right-hand panels show the corresponding individual density fields, i.e. the displaced
random field (−δs, the set of three thinner curves peaking at low k) and displaced galaxy density field (δd, the set of three thicker curves peaking at high k) that
forms the reconstructed density field (i.e. in the left-hand panels) after mutual addition. Top panels show the propagators for the modes across the line-of-sight
direction (cosine the line-of-sight angle μ = 0.05–1) and the bottom panels show the propagators for the modes almost along the line of sight (μ = 0.95–1).
Black dotted lines show the Gaussian damping model with �nl(k = 0.3 h Mpc−1) before reconstruction. Red, magenta, and blue dotted lines show the modified
Gaussian damping model with �nl(k = 0.3 h Mpc−1). Gray reference lines are located at unity and (1 + βμ2).

When we further decrease the smoothing scale, the reconstruc-
tion efficiency saturates between �sm = 7 h−1 Mpc − 10 h−1 Mpc
and decreases when �sm < 7 h−1 Mpc as shown in Fig. 3. This is
reasonable as a smaller �sm will allow information from smaller
scales that would be increasingly dominated by noise and non-
linearity. Note that this convergence is based on the shot noise level
of BOSS CMASS; dependence on �sm would change as a function
of the shot noise level and the degree of non-linearity. Accordingly,
we find that the modified Gaussian damping model fares worse as
the smoothing length decreases below 10 h−1 Mpc, probably due to
using more non-linear and shot-noise dominated information when
reconstructing the displacement field.

6 R ESULTS: N OISE

Assuming a Gaussian error, the noise level of the reconstructed
field can be approximated by estimating the amplitude of PMC after
reconstruction, i.e. the component of the power spectrum that does
not directly contain the BAO information.5 In this section, we ob-

5 Ngan et al. (2012) has shown that non-Gaussian errors on the BAO mea-
surement in multi-parameter fitting are negligible.

serve the mode-coupling terms for different smoothing scales and
anisotropy conventions. Note that PMC includes Poisson shot noise
contribution.

6.1 Varying anisotropy convention

Fig. 4 compares the isotropic BAO reconstruction (red lines) and the
anisotropic BAO reconstruction (blue lines) for �sm = 20 h−1 Mpc.
The black lines corresponds to the pre-reconstructed density field.
In the left-hand panels, the dashed lines show CG(k, μ)2Plin (BAO
signal model) and the solid lines show PMC = Pnl − C(k, μ)2Plin

(noise) where Pnl includes shot noise contribution. The dotted black
lines show PMC when using the corresponding Gaussian models
for the propagators, i.e. PMC = Pnl − CG(k, μ)2Plin or Pnl −
CMG(k, μ)2Plin. That is, the difference between the solid and the
dashed lines is that the former uses the measured C(k, μ) while the
latter uses the Gaussian model propagators. We will adopt these
Gaussian models (dotted lines) to approximate the BAO damping
in the Fisher matrix calculations in Section 7. As expected, because
the two conventions conduct an almost identical operation across
the line of sight, we observe no difference in PMC in this direc-
tion (i.e. blue and red lines are over-imposed in the top left panel).
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Figure 3. The same as the left-hand panels of Fig. 2 except that cyan and
green lines correspond to � = 5 and 7 h−1 Mpc. Red, magenta, and blue
correspond to �sm = 10, 14, and 20 h−1 Mpc as before.

Meanwhile, PMC from the two conventions are almost identical also
along the line of sight (bottom left panel) for k > 0.1 h Mpc−1 while
being slightly different for k < 0.1 h−1 Mpc. This range of k <

0.1 h Mpc−1 is approximately where the signal terms of the two
conventions are different along the line of sight because each con-
vention makes a different choice on displacing random particles.
Note that PMC is slightly higher for the anisotropic reconstruction
case along with the stronger BAO signal for this convention. This is
reasonable; on large scales, the dominant contribution to PMC would
be shot noise and any shot noise relative to the signal in the density
field we use to derive the displacement field will be frozen de-
spite the overall factor we multiply to correct for the redshift-space
distortions.

The right-hand panel shows the BAO signal-to-noise ratio for
each k mode, i.e. C2Plin/Pnl for the two different conventions; note
that the noise includes the sample variance from the signal in this
plot. The two conventions return almost the same signal to noise in
both directions. It is partly because, the range of k < 0.1 h Mpc−1

where the signal terms of the two conventions differ is the range
where the sample variance from the cosmic signal dominates PMC,
making the boosted signal ineffective, and also partly because PMC

is also slightly higher for Rec-Ani along with the stronger BAO

signal. If we decrease to �sm = 14 h−1 Mpc, we find that the two
convention returns even more similar signal-to-noise ratios in both
directions. This result agrees with Burden et al. (2014) that found
no difference in the BAO precisions between the two conventions
at the noise level of BOSS CMASS sample.

6.2 Dependence on the smoothing term

In Fig. 5, red, magenta, and blue correspond to the reconstructed
density field using �sm = 10, 14, and 20 h−1 Mpc, respectively.
Cyan and green correspond to �sm = 5 h−1 Mpc and 7 h−1 Mpc.
The left-hand panel shows that as the smoothing length decreases
from 20 h−1 Mpc to 10 h−1 Mpc (from blue to red), PMC of the
post-reconstructed field further decreases in both directions, but
more so along the line of sight. In other words, decreasing the
smoothing length not only improves the BAO signal (based on
the propagator) but also decreases the non-linear effect on small
scales. Such a decrease in PMC tends to saturate below �sm ∼
7 h−1 Mpc (i.e. the cyan solid line overlaps with the green solid
line) possibly due to the domination of shot noise and non-linearity
on these scales or due to the resolution of the mesh size (i.e.
2.9 h−1 Mpc) used to measure the power spectrum in the mock
simulation.

In the case of �sm = 20 h−1 Mpc (blue), we find that PMC (left-
hand panels) derived using the modified Gaussian damping model
(dotted lines) is somewhat greater than the exact estimate on very
large scales (solid lines); note, however, that the signal dominates
noise on this scale. In the case of �sm = 5 h−1 Mpc (cyan), PMC

using the modified Gaussian damping model is a poor description,
as also implied in Fig. 3. We therefore focus on �sm = 10, 14, and
20 h−1 Mpc when conducting the Fisher matrix analysis in Section 7
using the Gaussian damping models.

Traditionally, we use the signal to noise of power at
k = 0.2 h Mpc−1 to estimate the BAO constraints (Seo &
Eisenstein 2007). We derive PMC = Pnl − C2

GPlin at k =
0.2 h Mpc−1, i.e. PMC,0.2 after reconstruction, which returns 2604,
3066, and 3697 h−3 Mpc3 for the modes across the line of sight and
3413, 4472, 5819 h−3 Mpc3 along the line of sight for �sm = 10, 14,
and 20 h−1 Mpc, respectively. The anisotropy in PMC,0.2 is greater
for a larger smoothing length: the ratio of PMC,0.2 between the two
directions is 1.31 when �sm = 10 h−1 Mpc while it is 1.57 when
�sm = 20 h−1 Mpc.

The right-hand panel clearly shows the well-known significant
signal-to-noise gain due to reconstruction, which increases with de-
creasing smoothing length. The gain becomes saturated when �sm

= 7–10 h−1 Mpc and the signal to noise reduces as the smoothing
length is reduced below 7 h−1 Mpc. Vargas-Magaña et al. (2015)
studied the dependence on the smoothing length by estimating dis-
persions of the BAO constraints among mock simulations that are
reconstructed with the isotropic reconstruction. They are using the
original Gaussian damping model for the BAO fitting, while we are
relying on a pure Fisher matrix approach. Their result agrees with
ours in terms of the optimal smoothing lengths after noting that their
derived optimal smoothing lengths of 5–10 h−1 Mpc correspond to
7–14 h−1 Mpc in our convention.

Taking the validity of the modified model into consideration
shown in the previous section, the smoothing scale of 10 h−1 Mpc
appears to be the optimal choice for the BAO analysis. These plots
also support the robustness of the reconstruction efficiency despite
the choice of smoothing length, i.e. the large difference between
the black line and any of the colored lines, which again agrees with
what is observed in the literature (e.g. Mehta et al. 2011).
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Figure 4. Left: mode-coupling components (solid lines, PMC = Pnl − C(k, μ)2Plin) relative the BAO signal estimated by CG(k, μ)2Plin (dashed lines) for the
two anisotropy conventions while fixing smoothing length �sm = 20 h−1 Mpc. Black line: pre-reconstructed density field. Red: post-reconstructed field with
the isotropic reconstruction. Blue: using the anisotropic reconstruction. In the upper left and right panels for μ = 0.05, the blue line and the red line are almost
over-imposed. The dotted black lines show PMC when using the corresponding Gaussian models for the propagators, i.e. PMC = Pnl − CG(k, μ)2Plin for the
pre-reconstructed field and Pnl − CMG(k, μ)2Plin for the post-reconstructed field. Right: the BAO signal-to-noise ratio for each k mode, i.e. C2Plin/Pnl. Note
that, with Pnl in the denominator, the ‘noise’ is now the total noise that includes the sample variance from the signal C(k, μ)2Plin in additional to PMC.

7 D ISCUSSIONS

7.1 Fisher matrix estimates of the BAO measurement
precisions

Given the dependence of the BAO signal and noise on different
reconstruction details observed in this paper, we predict the BAO
distance measurement precisions for the post-reconstructed density
field of BOSS DR12 data as a function of the smoothing scale and
the an/isotropic conventions. We use the Fisher matrix formalism
in Seo & Eisenstein (2007) for the BAO-only signal, but appropri-
ately modify the Gaussian damping model and the mode-coupling
amplitudes. We define the signal at k to be

Sg(k) = Plin(k)C2(k, μ)

= Plin(k)(1 + βμ2(1 − cS(k)))2

× exp

[
−k2(1 − μ2)�2

xy

2
− k2μ2�2

z

2

]
, (18)

where S(k) is the smoothing filter from equation (5) and c = 1 for
the post-reconstructed field with the isotropic BAO reconstruction
but c = 0 otherwise. The square root of the variance of the signal at

k is proportional to the observed total power at k, which we model
as:

N (k) = Pnl = Plin(k)C2(k, μ) + PMC,0.2(μ), (19)

where we allow PMC,0.2(μ) to be angle-dependent; Fig. 4 shows
a weak scale-dependence in PMC(k), but we ignore the scale-
dependence and approximate PMC(k) � PMC,0.2.

Assuming the likelihood function of the band powers of the
galaxy power spectrum to be Gaussian, the signal to noise of the
band power can be approximated as

Sg

N =
√

2πk2dkdμVsurvey

2(2π )3

×
Plin(k) exp

[
− k2

⊥�2
xy+k2

‖�2
z

2

]

Plin(k) exp

[
− k2

⊥�2
xy+k2

‖�2
z

2

]
+ PMC,0.2(μ)

R(μ)

, (20)

where we define R(μ) ≡ [1 + βμ2(1 − cS(k))]2. The only dif-
ference from Seo & Eisenstein (2007) is therefore what goes into
PMC,0.2(μ)/R(μ).
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Figure 5. Left: mode-coupling components (solid lines, PMC = Pnl − C(k, μ)2Plin) relative the BAO signal estimated by CG(k, μ)2Plin (dashed lines). Cyan,
green, red, magenta, and blue correspond to the reconstructed density field using �sm = 5, 7, 10, 14, and 20 h−1 Mpc and the black corresponds to the
pre-reconstructed density field. The dotted black lines show PMC when using the corresponding Gaussian models for the propagators, i.e. PMC = Pnl − CG(k,
μ)2Plin for the pre-reconstructed field and Pnl − CMG(k, μ)2Plin for the post-reconstructed field. Right: the BAO signal-to-noise ratio for each k mode, i.e.
C2Plin/Pnl. Note that, with Pnl in the denominator, the ‘noise’ is now the total noise that includes the sample variance from the signal C(k, μ)2Plin in additional
to PMC. In the top right panel, the green (�sm = 7 h−1 Mpc) and the red (10 h−1 Mpc) lines are almost super-imposed while the cyan (5 h−1 Mpc) and magenta
(14 h−1 Mpc) are almost super-imposed in the bottom panel.

Following Seo & Eisenstein (2007), we project this Sg

N on to
DA(z) and H. The Fisher matrix for the BAO-only information is
then,

Fij = VsurveyA
2
0

∫ 1

0
dμ fi(μ)fj (μ)

∫ ∞

0
dk

×
k2 exp

[−2(k�s)1.4
]

exp
[
−k2(1 − μ2)�2

xy − k2μ2�2
z

]
(

P (k)
P0.2

exp
[
−k2(1 − μ2)�2

xy − k2μ2�2
z

]
+ PMC,0.2

[P0.2R(μ)]

)2 (21)

where Vsurvey is the volume of the survey, �s is the Silk damping
scale, and fi(μ) and fj(μ) are the derivatives of the BAO peak location
with respect to the anisotropic distances such as angular diameter
distance DA and the Hubble parameter H . We take A0 = 0.4529
and �s = 7.76 h−1 Mpc presented in Seo & Eisenstein (2007) for
WMAP1. For �xy and �z values, we adopt damping scales that
were measured directly from the propagators at μ = 0.05 and 0.95.
We approximate PMC,0.2(μ) with A1 + A2(1 + βμ2)2 while A1 and
A2 are derived from PMC,0.2 for the modes centred at μ = 0.05
and 0.95.

We find that when �sm decreases from 20 h−1 Mpc to 10 h−1 Mpc,
we expect the precision on DA , H , and the isotropic distance
scale DV

6 to improve by 16 per cent, 20 per cent and 17 per cent.
When decreasing �sm = 14 h−1 Mpc to 10 h−1 Mpc, we predict
an improvement of 10, 12, and 11 per cent on DA , H , and DV,
respectively.

The resulting predictions for the constraints on DA , H , and DV for
the final data release (DR12) of BOSS CMASS BAO are presented
in Table 1. The predicted constraints for DR11 CMASS data would
be

√
1.15 times larger than these values, accounting for the volume

in DR11 relative to the volume in DR12. For the default smoothing
scale of �′

sm = 15 h−1 Mpc used for Anderson et al. (2014), which
corresponds to �sm = 20 h−1 Mpc in this paper, our prediction is
1 per cent and 0.65 per cent on DV before and after isotropic recon-
struction, respectively, which is ∼30 per cent better than the actual
DR11 constraints (Anderson et al. 2014) even after accounting for

6 The DV constraint here is at fixed Alcock–Pazynski (Alcock & Paczynski
1979) shape DAH, corresponding to a BAO distance scale derived from a
spherically averaged clustering information.
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Figure 6. Results of fitting power spectra multipoles using the two BAO models. The monopole (black circles) and quadrupole (red circles) power spectra
are generated from 20 mock simulations that went through the isotropic reconstruction with �sm = 20 h−1 Mpc. Shot noise is subtracted for the power spectra
in this figure. The error bars correspond to the errors of the averaged power spectra and are derived from 1000 QPM mocks. Solid black (monopole) and red
lines (quadrupole) show the best fits using the modified fitting model (top panels, i.e. including 1 − S(k)) and the original fitting model (bottom panels, without
including 1 − S(k)). The middle panels show the power spectra divided by an arbitrary smooth power spectra to highlight the BAO feature. Note the large
deviation between the quadrupole data and the best fit when using the original model in the bottom panel, given the errors of the averaged 20 mocks. The right
panels show the final 68 per cent confidence regions on α⊥ and α‖ (i.e. DA(z)/rs and 1/Hrs relative to the true values); individual blue points correspond to the
20 best fits of individual mocks and the blue contour shows a covariance derived from the dispersion among the 20 best fits. Red square and cross points are
the averages and the best fits of the MCMC chains using the average of the 20 mocks. The red contours are drawn based on the covariance derived from the
weighted MCMC chains and rescaled to represent constraints for an individual mock.

the factor of
√

1.15. This discrepancy is roughly consistent with
the difference between DR9 (Anderson et al. 2012) constraints and
the Fisher predictions that Font-Ribera et al. (2014) pointed out.
Referring to Font-Ribera et al. (2014), the reason for this discrep-
ancy could be due to Fisher matrix being overly optimistic or due
to the analysis of the mocks and data being sub-optimal. Here, we
test if improving the fitting model in the analysis decreases this
discrepancy.

7.2 Improving the fitting model for the reconstructed BAO

Based on our results and the LPT derivations in the appendix, we
suggest using the modified Gaussian fitting model for the isotropic
BAO reconstruction and the original Gaussian fitting model for the
anisotropic BAO reconstruction in future surveys. In this subsection,
we test the effect of using this improved model for isotropic BAO
reconstruction. We utilize 19 more runA realizations from White
et al. (2011). The left-hand panels of Fig. 6 shows the monopole
(black points) and quadrupole (red points) power spectra generated
from a total of 20 mock realizations that went through the isotropic
reconstruction with �sm = 20 h−1 Mpc. Due to the small number
of runA realizations available, we derive the covariance matrix

from dispersions among 1000 periodic quick particle mesh (QPM)
mocks (White, Tinker & McBride 2014) that have similar monopole
and quadrupole amplitudes. We rescale the covariance matrix to
take into account the volume difference between the two different
simulations; the error bars in the figure correspond to the rescaled
errors associated with the mean of the 20 mocks. The BAO scales,
α⊥ and α‖ are fit using a model that is consistent with Beutler et al.
(in preparation):

P0(k′) = 1

2

∫ 1

−1
P (k′, μ′)dμ′ + A0(k′) (22)

P2(k′) = 5

2

∫ 1

−1
P (k′, μ′)L2(μ′) dμ′ + A2(k′), (23)

where

P (k′, μ′) = B2(1 + βμ2(1 − S(k)))2

×
[

(Plin(k) − Psm(k))e
[
−k2(1−μ2)�2

xy/2−k2μ2�2
z /2

]
+ Psm(k)

]

× 1[
1 + (kμ�s)2/2

]2 , (24)
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and

A�(k′) = a�,1

k′3 + a�,2

k′2 + a�,3

k′ + a�,4 + a�,5k
′ (25)

Here, k′ and μ′ are observed coordinates and they are related to the
true coordinates by

k = k′ × 1

α⊥

√
1 + μ′2(α2

⊥/α2
‖ − 1), (26)

μ = μ′ 1

α‖/α⊥ ×
√

1 + μ′2(α2
⊥/α2

‖ − 1)
, (27)

and the no-wiggle power spectrum Psm(k) is derived using the for-
mula in Eisenstein & Hu (1998) and Plin is derived using the same
cosmology as the mock simulations. The fitting parameters are
α⊥, α‖, β, ln (B2), a0,is, a2,is, i.e. a total of 14 parameters. We inter-
pret the final error on α⊥ to be a fractional error on DA(z)/rs and the
error on α‖ to be a fractional error on 1/[Hrs], where rs is the sound
horizon scale. We fix �xy = 2.9 h−1 Mpc, �z = 6.2 h−1 Mpc based
on the measured propagators in Table 1; we set �s = 0 h−1 Mpc
based on the consideration that the measured propagator along the
line of sight should account for the finger of the God effect. Setting
�s = 1 h−1 Mpc instead produces only a difference of 3–5 per cent
compared to the default constraints we present below.

The middle panels show the multipole power spectra divided by
smooth power spectra to highlight the BAO feature. In the left-
hand and the middle panels, the solid black and red lines show the
best fits from Monte Carlo Markov Chain (MCMC) chains using
the averaged mock data, with the top panels showing the results
using the modified BAO damping model (equation 24), and the
bottom panels showing the results using the original Gaussian BAO
damping model (i.e. without 1 − S(k) in equation 24). Note that the
mock data was reconstructed using the isotropic convention.

The reconstructed field that used the isotropic convention has a
small residual quadrupole but with a peak near k ∼ 0.1 h−1 Mpc.
The original Gaussian fitting model with neither zero β nor nonzero
β can accurately describe such a peak and the imprinted BAO
feature in the quadrupole as shown in the middle bottom panel. Such
deviation would be less apparent when dealing with an individual
mock with a larger sample variance. Indeed, on average, the reduced
χ2 for an individual realization, which corresponds to 1.43 times
the volume of the BOSS DR12 data, is only 1.287 using the original
Gaussian model. However, when the precision of the data increases,
or when we deal with a large number of mocks, which we often do to
test systematics and covariance, this discrepancy becomes apparent
in the form of a large reduced χ2. For the averaged power spectrum
of the 20 mocks we use in this paper, we already find the reduced
χ2 of 6.20 ; the reduced χ2 would increase further as the sample
size increased. If we use the modified model, the reduced χ2 of the
fit decreases from 6.20 to 1.69 for the average of the 20 mocks (and
from 1.28 to 1.04 for an individual mock). That is, the goodness of
the fit has been significantly improved with the modified model.

Another interesting question to ask is if the limitation in the
current model has been limiting the BAO constraints we can achieve
from the current data set so that we can use the modified model to
improve the BAO constraints to the level of the Fisher predictions
and if inaccuracies in the model lead to biases in recovered DA or
H measurements. The blue points of the right-hand panels of Fig. 6

7 We apply the factor from Hartlap, Simon & Schneider (2007) to correct
for the bias of the inverse covariance matrix.

show the distribution of α⊥ and α‖ of the best fits of the individual
20 realizations. The blue contour corresponds to the covariance
constructed from the dispersions among these 20 realizations, which
is subject to a large sample variance due to the small number of
mocks. The red contour shows the covariance of α⊥ and α‖ derived
from weighted MCMC chains using the average power spectra of
the 20 mocks. The contour has been rescaled to represent an error
ellipse for an individual mock. The red cross point is the best fit
from the chains and the red square is the average of the chains. All
errors are corrected based on Percival et al. (2014) to propagate
errors in the covariance matrices derived from mocks.

We find that the modified model indeed decreases biases on the
recovered α⊥ and α‖ measurements; the red and blue points in the
top panel lie near the true cosmology, i.e. α⊥ = 1 and α‖ = 1. Also,
the consistency between the red and blue contours, i.e. between
the dispersion among individual mocks and the likelihood contour
of the averaged mock has been noticeably improved. The standard
deviations from the MCMC chains give σ DA(z) = 0.93 per cent
and σ H(z) = 1.65 per cent with the modified model and σ DA(z) =
0.99 per cent and σ H(z) = 2.21 per cent with the original model,
which is a ∼30 per cent improvement in σ H(z).

When the results for the original model are rescaled for the sur-
vey volume of DR12 (DR11), we find 1.18 per cent (1.27 per cent)
and 2.64 per cent (2.83 per cent), which reasonably agrees with
1.43 per cent and 2.52 per cent from Anderson et al. (2014) for
DR11. That is, our result using the original fitting model for the
isotropically reconstructed field indeed agrees with the current con-
straints in the literature. As pointed out in Font-Ribera et al. (2014),
the current DR11 constraints are about 30 per cent worse than the
Fisher matrix predictions; this paper shows that the discrepancy ap-
pears to remain at this level even after considering the dependence
on the reconstruction details in the Fisher matrix calculations, as
investigated in Table 1.

When the results using the modified model are rescaled to
DR12 (DR11), we find 1.11 per cent (1.19 per cent) and 1.97 per cent
(2.11 per cent). Note that these values agree better with Fisher fore-
casts in Table 1 for the �sm = 20 h−1 Mpc but remain 15–20 per cent
larger. Ross, Percival & Manera (2015) showed that in the limit
where the BAO information is equally distributed in each direction,
i.e. in μ, the hexadecapole contribution would be minimal. Under
this assumption, they found a good agreement between their error
forecasts and the DR11 measurements. In this paper, we find that
such assumption is not strictly valid even in the isotropic recon-
struction case. For example, Fig. 5 shows that the reconstructed
BAO signal-to-noise ratio for each k mode is highly anisotropic,
especially for a large smoothing length; even for the isotropic re-
construction case, we see the signal to noise at k ∼ 0.2 h Mpc−1

is 38 per cent greater across the line of sight (i.e, 0 < μ ≤ 0.1)
compared to along the line of sight (i.e, 0.9 < μ < 1) for �sm =
20 h−1 Mpc. For �sm = 15 h−1 Mpc and �sm = 10 h−1 Mpc, the sig-
nal to noise at k ∼ 0.2 h Mpc−1 is 24 per cent and 17 per cent greater
across the line of sight, respectively. Therefore, the remaining dis-
crepancy between the Fisher forecasts and our mock data analysis
could be partly due to the missing hexadecapole information in the
data analysis (e.g. Taruya, Saito & Nishimichi 2011). Including the
hexadecapole or designing alternative moments, optimized for such
a distribution of signal to noise may help to alleviate the tension
between Fisher forecasts and current measurements. We leave such
investigations to future work.

In summary, we observe significant gains in terms of the agree-
ment between the model and the data, biases on the measurements,
and also a modest improvement on the measurement precisions
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when using the modified model for the isotropically reconstructed
data.

8 C O N C L U S I O N

We have investigated the effects of the details that went in the
densify field reconstruction technique by means of propagators of
the pre- and post-reconstructed density field. Using a mock galaxy
sample that mimics the clustering and noise level of BOSS CMASS
galaxies, we studied the effect of the RSD treatment as well as the
effect of the smoothing scales used during the BAO reconstruction.

We found that while the original BAO reconstruction convention
that attempts to preserve the RSD signal in the reconstructed field
induces a boosted signal on large scales along the line of sight, the
BAO reconstruction convention that attempts to remove the RSD
signal appears to recover a shallower BAO damping. We estimated
the noise level for the two conventions before and after reconstruc-
tion and found that the noise levels are almost identical on small
scales. On large scales where the anisotropic convention produces
a boosted signal along the line of sight, the noise level is boosted
as well for this convention; the dominant contribution to noise on
large scales would be shot noise and any shot noise relative to the
signal in the density field we use to derive the displacement field
will be frozen despite the overall factor we multiply. As a result,
the two conventions returned almost identical BAO signal-to-noise
ratios.

For the noise level of BOSS CMASS, we found that the recon-
struction efficiency improves as the smoothing scale decreases from
20 h−1 Mpc; the efficiency saturates near the smoothing scale of 7–
10 h−1 Mpc and decreases below 7 h−1 Mpc. We clearly showed that
the isotropic convention generates a BAO signal along the line of
sight that cannot be modelled by the previously used, simple Gaus-
sian damping model and we present a modified model based on
the first order LPT that should closely correspond to the model for
the correlation function presented in White (2015). The original
Gaussian damping model appeared a worse description for a larger
smoothing scale. Both Gaussian damping models appeared to fail
as the smoothing scale decreases below 10 h−1 Mpc, probably due
to more non-linear and shot-noise dominated information included
when reconstructing the displacement field.

Decreasing the smoothing scale not only improved the BAO sig-
nal but also decreased the noise level. We found that such improve-
ment saturates below the smoothing scale of 7 h−1 Mpc. In terms of
BAO signal to noise, the gain is maximized at the smoothing scale
of 7–10 h−1 Mpc for BOSS CMASS; considering the validity of the
modified model as a fitting formula for �sm > ∼10 h−1 Mpc, we
believe that a smoothing scale of 10 h−1 Mpc would be the optimal
for the current data set.

We incorporated the derived propagator and noise results into the
Fisher matrix analysis and predicted constraints on an angular di-
ameter distance and Hubble parameter. When the smoothing scale
decreased from 20 h−1 Mpc to 10 h−1 Mpc, the predicted precision
on DA(z) and H improved by 16 per cent and 20 per cent, respec-
tively. When decreasing the smoothing scale from 15 h−1 Mpc to
10 h−1 Mpc, the precision on DA(z) and H improved by 10 per cent
and 12 per cent, respectively. The derived Fisher estimates were ap-
proximately 30 per cent better than the reported DR11 constraints
(Anderson et al. 2014).

Using the mock data, we tested the effect of using the modified
BAO model in the data analysis. The modified model substantially
improved the goodness of the fit, decreased biases on the recovered
cosmology, and mildly improved the constraints. The improved

constraints agree with the Fisher forecasts within 15–20 per cent.
We suspect that the remaining discrepancy between the Fisher fore-
casts and our measurements could be partly due to the missing
hexadecapole information in our analysis; we leave this for future
investigation.
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APPENDIX A : BAO RECONSTRUCTION O F BI ASED TRACERS I N REDSHI FT SPAC E

Assuming locality of bias in Lagrangian space, Matsubara (2008b) derives an expression of the power spectrum of biased objects in redshift
space. The validity of the local Lagrangian bias can be found in e.g. Saito et al. (2014). To summarize, the Eulerian density field δ(x) and the
power spectrum of biased tracers Pbias(k) in redshift space can be written as:

δ(x) =
∫

d3q F [δR(q)] δ3
D[x − q − �s(q)] − 1 (A1)

Pbias(k) =
∫

d3q e−ik·q
[∫

λ1

2π

∫
λ2

2π
F̃ (λ1)F̃ (λ2) ,

〈
ei[λ1δR (q1)+λ2δR (q2)]−k·[�s(q1)−�s(q2)]

〉 − 1
]
, (A2)

where q = q1 − q2 is the Lagrangian coordinate, and �s is a displacement field in redshift space given by �s = � + (ẑ · �̇ )ẑ/H . F̃ is the
Fourier transform of the Lagrangian bias functional that depends on the smoothed linear density field δR(q). From these definitions, Matsubara
(2008b) derives

Pbias(k) = exp
[−{k2(1 − μ2) + k2μ2(1 + f )2}Av + O(P 2

L )
] [

(1 + 〈
F ′〉 + f μ2)2PL(k) + O(P 2

L )
]
, (A3)

where Av is the linear velocity dispersion, Av ≡ ∫
dp PL(q)/(6π2), and the linear bias corresponds to b ≡ 1 + 〈F′〉.

The full expression of the O(P 2
L ) at one-loop level can be found in Matsubara (2008b). The observed biased field will additionally include

the Poisson shot noise contribution pshot(x), i.e.

δ(x) =
∫

d3q F [δR(q)]δ3
D[x − q − �s(q)] − 1 +

∫
d3q pshot(q)δ3

D[x − q], (A4)

so that〈
pshot(q)pshot(q ′)

〉 = 1

n̄
δ3
D(q − q ′), (A5)

where n̄ is the number density of tracers. In Fourier space, we have

δ̃obs(k) =
∫

d3q e−ik·q
[∫

dλ1

2π
F̃ (λ1)eiλ1δR (q)e−ik·�s − 1

]
+ pshot(k), (A6)

Pobs(k) = Pbias(k) + 1

n̄
. (A7)

Note that the shot noise contribution is nonzero for k �= k′ if n̄ has a spacial dependence. For simplicity, we ignore the shot noise contribution.
Now we aim to derive a similar expression for the reconstructed fields. Here we closely follow the derivations in Padmanabhan et al. (2009)

and Noh et al. (2009) that were taken for reconstructing real-space biased density field. We derive the reconstructed power spectrum of the
biased tracers in redshift space, particularly including the two reconstruction conventions. As explained in Section 2.2, the reconstruction
generally requires us to first estimate the displacement field for the observed galaxies, s, along the line of sight, after applying a smoothing
kernel S(k) with the correction factors, λd and κ which depend on the convention:

si(k) = (δij + λd ẑi ẑj )

(
−i

kj

k2
S(k)

δ̃obs(k)

κ

)
. (A8)

Likewise for the reference particles, we displace them with the correction factors, λs and κ which again depend on the convention:

ss,i(k) = (δij + λs ẑi ẑj )

(
−i

kj

k2
S(k)

δ̃obs(k)

κ

)
. (A9)
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Then the displaced galaxy density and random fields are simply given by

δ̃d (k) =
∫

d3x e−ik·x
{∫

d3q F [δR(q)]δ3
D[x − q − �s(q) − s] − 1

}
=

∫
d3q e−ik·q

{∫
dλ1

2π
F̃ (λ1)eiλ1δR (q)e−ik·(�s+s) − 1

}
, (A10)

δ̃s(k) =
∫

d3q e−ik·q(e−ik·ss − 1), (A11)

and therefore the reconstructed power spectrum Prec is expressed as

Prec(k) = 〈
(δ̃d (k) − δ̃s(k))(δ̃d (k) − δ̃s(k))∗

〉 = Pdd(k) + 2Psd(k) + Pss(k) =
∫

d3q e−ik·q
[〈∫

dλ1

2π

∫
dλ2

2π
F̃ (λ1)F̃ (λ2)

× eiλ1δR (q1)+λ2δR (q2)−k·(�s (q1)−�s(q2)+s(q1)−s(q2))
〉 − 2

〈∫
dλ2

2π
F̃ (λ2)eiλ2δR (q2)−k·{ss (q1)−s(q2)−�s(q2)}

〉
+ 〈

e−ik·(ss (q1)−ss (q2))
〉]

. (A12)

A1 The Rec-Iso convention

In the case of the reconstruction convention of ‘Rec-Iso’ from equation (8), we correct for the redshift-space distortions as well as for the
galaxy bias in deriving the displacement fields by dividing the observed density field by be(1 + βeμ

2), where be and βe are our estimates of
the true quantities. Simply assuming be = b and βe = β = f/b, the correction factors in the ‘Rec-Iso’ convention are

λRec−Iso
d = f , λRec−Iso

s = 0, κRec−Iso = b(1 + βμ2). (A13)

Let us derive individual terms of Prec. With a help of the cumulant expansion theorem, the first term in equation (A12) becomes

Pdd(k) =
∫

d3q e−ik·q
〈[

dλ1

2π

dλ2

2π
F̃ (λ1)F̃ (λ2)ei(λ1δR (q1)+λ2δR (q2)−k·(�s(q1)−�s(q2)+s(q1)−s(q2))

]〉

=
∫

d3q e−ik·q dλ1

2π

dλ2

2π
F̃ (λ1)F̃ (λ2) exp

[ ∞∑
N=1

(−i)N

N !

〈{−λ1δR(q1) − λ2δR(q2) + k · (�s(q1) − �s(q2) + s(q1) − s(q2))
}N

〉
c

]

=
∫

d3q e−ik·q dλ1

2π

dλ2

2π
F̃ (λ1)F̃ (λ2) exp

[
in1+n2+m1+m2+l1+l2

n1!n2!m1!m2!l1!l2!
B

n1n2
m1m2,l1l2

(k, q)

]
, (A14)

where B
n1n2
m1m2,l1l2

(k, q) is defined as

B
n1n2
m1m2,l1l2

(k, q) ≡ (−1)m1+l1
〈
(λ1δR,1)n1 (λ2δR,2)n2 (k · �s

1)m1 (k · �s
2)m2 (k · s1)l1 (k · s2)l2

〉
c
. (A15)

Here we omit δR(q1) as δR,1 etc. Notice that this expression is exact and does not involve any approximations. As a reminder, n1,2 are entries
contributed from galaxy bias, m1,2 are from the non-linear density field, and l1,2 are contributed from the process of reconstruction. In the
following, we approximate the displacement the field, � up to linear order, and calculate all the terms up to tree order. At tree-level order, we
include terms n1 + n2 + m1 + m2 + l1 + l2 ≤ 2. Assuming that the smoothing kernel is isotropic, S(k) = S(k) and the smoothed observed
field is approximated by the linear density field, i.e. 〈δ̃L(k)δ̃obs(k)〉 ≈ b(1 + βμ2)PL(k), it is straightforward to obtain

Pdd(k) = exp

[
−k2(1 − μ2)

∫
dp

6π2
PL(p){1 − S(p)}2 − k2μ2

∫
dp

6π2
PL(p){(1 + f ) − (1 + λd )S(p)}2

]

× [
b(1 + βμ2) − (1 + λdμ

2)S(k)
]2

PL(k),

Pss(k) = exp

[
−{k2(1 − μ2) + k2μ2(1 + λs)

2}
∫

dp

6π2
PL(p)S(p)2

]
(1 + λsμ

2)2S(k)2PL(k),

Psd(k) = −
√

Pdd(k)Pss(k), (A16)

where κ = b(1 + βμ2) is used. We thus finally reach

Prec(k, μ) = {[b(1 + βμ2) − (1 + λdμ
2)S(k)

]
e

−k2(1−μ2)�2
dd,xy/4

e−k2μ2�2
dd,z/4 + (1 + λsμ

2)S(k)e−k2(1−μ2)�2
ss,xy/4e−k2μ2�2

ss,z/4}2PL(k), (A17)

where we define

�2
dd,xy ≡ 2

∫
dp

6π2
PL(p)(1 − S(p))2, (A18)

�2
dd,z ≡ 2

∫
dp

6π2
PL(p){(1 + f ) − (1 + λd )S(p)}2, (A19)

�2
ss,xy ≡ 2

∫
dp

6π2
PL(p)S2(p), (A20)

�2
ss,z ≡ 2(1 + λs)

2
∫

dp

6π2
PL(p)S2(p). (A21)
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Making a specific choice of ‘Rec-Iso’, i.e. λd = f and λs = 0, to follow the convention in Padmanabhan et al. (2012), gives �dd,xy = �dd,z/

(1 + f) = �dd and �ss,xy = �ss,z = �ss yield to

Prec(k, μ) = b2

[
{1 + βμ2(1 − S(k))}e−k(1−μ2)�2

dd/4e−k2μ2(1+f )2�2
dd/4 + 1

b
S(k)

{
e−k2�2

ss/4 − e−k(1−μ2)�2
dd/4e−k2μ2(1+f )2�2

dd/4
}]2

PL(k).

(A22)

Thus the resulting propagator is

C(k, μ) = {
1 + βμ2(1 − S(k))

}
e−k(1−μ2)�2

dd/4e−k2μ2(1+f )2�2
dd/4 + 1

b
S(k)

{
e−k2�2

ss/4 − e−k(1−μ2)�2
dd/4e−k2μ2(1+f )2�2

dd/4
}

(A23)

Our investigations suggest that �dd = �ss = � is a reasonable approximation for a certain choice of the smoothing lengths, yielding to the
simple fitting formula we suggest in this paper, equation (16):

Prec(k, μ) = b2

[{
1 + βμ2(1 − S(k))

}
e−k(1−μ2)�2/4e−k2μ2(1+f )2�2/4 + 1

b
S(k)e−k2�2/4

{
1 − e−k2μ2(2f +f 2)�2/4

}]2

PL(k). (A24)

The second term will contribute for large k and μ, while the first term dominates for small k or μ. Going back to equation (A22), even without
assuming �dd = �ss = �, we can derive the modified Gaussian damping model equation (16) when the second term is small:

Prec(k, μ) ≈ b2{[1 + βμ2(1 − S(k))
]
e−k(1−μ2)�2/4e−k2μ2(1+f )2�2/4}2PL, (A25)

and

C(k, μ) ≈ [
1 + βμ2(1 − S(k))

]
e−k(1−μ2)�2/4e−k2μ2(1+f )2�2/4 (A26)

For the smoothing scales we consider in this paper, indeed the second term is negligible.

A2 Rec-Ani limit

In the ‘Rec-Iso’ case,

λRec−Ani
d = λRec−Ani

s = f − β

1 + β
, κRec−Ani = b. (A27)

While the derivation is omitted, with κRec–Ani = b, it gives

Pdd = exp{−k2(1 − μ2)
∫

dp

6π2
PL(p)

[(
1 − S(p)(1 + 1

5
β)

)2

+S(p)2 8

175
β2

]

−k2μ2
∫

dp

6π2
PL(p)

[(
(1 + f ) − (1 + λd )S(p)(1 + 3

5
β)

)2

+ S(p)2 12

175
β2

]
}(1 + βμ2)2PL(k)

[
b − (1 + λdμ

2)S(k)
]2

, (A28)

and

Pss = exp{−k2(1 − μ2)
∫

dp

6π2
PL(p)

[(
S(p)(1 + 1

5
β)

)2

+S(p)2 8

175
β2

]

−k2μ2
∫

dp

6π2
PL(p)

[(
(1 + λs)S(p)(1 + 3

5
β)

)2

+ S(p)2 12

175
β2

]
}(1 + βμ2)2PL(k)

[
(1 + λsμ

2)S(k)
]2

, (A29)

With λRec−Ani
d , we can define

�2
dd,xy ≡ 2

∫
dp

6π2
PL(p){(1 − S(p)(1 + 1

5
β))2 + S(p)2 8

175
β2} (A30)

�2
dd,z ≡ 2

∫
dp

6π2
PL(p){{(1 + f ) − (1 + f )(1 + 3

5
β)/(1 + β)S(p)}2 + S(p)2 12

175
β2} (A31)

�2
ss,xy ≡ 2

∫
dp

6π2
PL(p)S2(p){(1 + 1

5
β)2 + 8

175
β2} (A32)

�2
ss,z ≡ 2

∫
dp

6π2
PL(p)S2(p){{(1 + f )(1 + 3

5
β)/(1 + β)}2 + 12

175
β2}. (A33)
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The power spectrum for the reconstructed field is obtained as

Prec(k, μ) = b2(1 + βμ2)2

[{
1 − 1

b

(
1 + f − β

1 + β
μ2

)
S(k)

}
e

−k(1−μ2)�2
dd,xy/4

e−k2μ2�2
dd,z/4

+ 1

b

(
1 + f − β

1 + β
μ2

)
S(k)e−k2(1−μ2)�2

ss,xy/4e−k2μ2�2
ss,z/4

]2

PL(k). (A34)

Rearranging some terms and approximating �dd = �dd,xy = �dd,z/(1 + f) and �ss = �ss,xy = �ss/(1 + f) gives

Prec(k, μ) = b2(1 + βμ2)2
[
e−k(1−μ2)�2

dd/4e−k2μ2(1+f )2�2
dd/4

+ 1

b

(
1 + f − β

1 + β
μ2

)
S(k){e−k2(1−μ2)�2

ss/4e−k2μ2(1+f )2�2
ss/4 − e−k2(1−μ2)�2

dd/4e−k2μ2(1+f )2�2
dd/4}

]2

PL(k). (A35)

Again, for the smoothing scales we consider in this paper, the second term is negligible, giving

Prec(k, μ) ≈ b2(1 + βμ2)2
[
e−k(1−μ2)�2/4e−k2μ2(1+f )2�2/4

]2
PL(k). (A36)

and

C(k, μ) ≈ [
1 + βμ2

]
e−k(1−μ2)�2/4e−k2μ2(1+f )2�2/4, (A37)

which returns the form in equation (15).
Note that the real-space limit (f = 0) in both conventions equations (A17) and (A34) reduce to the form derived in Noh et al. (2009).

A P P E N D I X B: MO D E L I N G P RO PAG ATO R S U S I N G T H E SE C O N D - O R D E R L P T

Following Matsubara (2008b) and Noh et al. (2009), the pre-reconstructed density field of biased tracers in redshift space have the following
propagator when expanded to include the next-to-leading order (i.e. one-loop) terms:

C(k, μ) = 1

bPL

[
(1 + f μ2)PL + 5

21
R1 + 3

7
R2 + f μ2

(
6

7
R2 + 5

7
R1

)

+ (b − 1)

(
PL + 3

7
(R1 + R2) + 6

7
f μ2(R1 + R2)

)]
exp

[−{
k2(1 − μ2) + k2μ2(1 + f )2

}
Av

]
, (B1)

where

R1(k) = k3

(2π )2
PL(k)

∫ ∞

0
dr PL(kr)

∫ 1

−1
dμ

r2(1 − μ2)2

1 + r2 − 2rμ
(B2)

R2(k) = k3

(2π )2
PL(k)

∫ ∞

0
dr PL(kr)

∫ 1

−1
dμ

(1 − μ2)rμ(1 − rμ)

1 + r2 − 2rμ
(B3)

Noh et al. (2009) shows that the reconstructed density field of biased tracers in real space have the following propagator:

C(k) =
〈
δ̃Lδ̃rec

〉
bPL(k)

= 1

bPL

[{
PL(k)(1 − S(k)) + 5

21
R1 + 3

7
R

(d)
2 + (b − 1)

(
PL(k) + 3

7
(R1 + R2)

)}
e−k2�2

dd/4 + PLSe−k2�2
ss/4

]
, (B4)

where the superscript ‘(d)’ in R(d) means using PL(1 − S) inside the integral in Equations (B2) and (B3). Removing the higher-order
contributions involving R returns the f = β = 0 case in Equation (A34). In this paper, we expand their result to the redshift space and derive
the 2nd-order LPT propagator model for the biased tracers in redshift space. Here we only consider the ‘Rec-Iso’ case just for simplicity:

C(k, μ) = 1

bPL

[[{
(1 + f μ2) − (1 + λdμ

2)S(k)
}

PL(k) + 5

21
(1 + 3f μ2)R1 + 3

7
R

(d)
2 + f μ2

(
6

7
R

(d)
2 + 3

7
λdR

(s)
1 − 3

7
λdR

(s)
s

)
+

−3

7
μ4f λd (R(s)

1 + 2R
(s)
2 ) (B5)

(b − 1)

{
PL + 3

7
(R1 + R2) + 6

7
f μ2(R1 + R2)

}]
e−k2�2

dd/4 + (1 + λsμ
2)PL(k)S(k)e−k2�2

ss/4

]
, (B6)

where the superscript ‘(s)’ in R(s) means using PL(k)S(k) inside the integral in equations (B2) and (equation (B3)).With λd = f and λs = 0,
this gives

C(k, μ) = 1

bPL

[[
(1 + f μ2)PL(1 − S) + 5

21
(1 + 3f μ2)R1 + 3

7
R

(d)
2 + f μ2(

6

7
R

(d)
2 + 3

7
f R

(s)
1 − 3

7
f R(s)

s )+

−3

7
μ4f 2(R(s)

1 + 2R
(s)
2 ) (B7)
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Figure B1. Comparison between models and the measured propagators. Solid lines: measured propagators with smoothing length of 14 h−1 Mpc. Dotted
lines: our Gaussian model based on C(k) at k = 0.3 h Mpc−1. Short dashed lines: the first-order LPT model. Long dashed lines: including the second-order
terms. The right-hand panels again show the corresponding individual density fields, i.e. the displaced random field (−δs, the thinner curves peaking at low k)
and displaced galaxy density field (δd, the thicker curves peaking at high k) that forms the reconstructed density field (i.e. in the left-hand panels) after mutual
addition. Note that when we include the second order terms, we can describe C(k) before reconstruction (black lines) better than when using the first order
term alone, while the first order model alone is a better fit to C(k) after reconstruction. We find that our simple models based on equations (15) and (16) (dotted
lines) describe the measured C(k) fairly accurately before and after reconstruction.

(b − 1)

{
PL + 3

7
(R1 + R2) + 6

7
f μ2(R1 + R2)

}]
e−k2�2

dd/4 + PLSe−k2�2
ss/4

]
, (B8)

Fig. B1 compares the measured propagators after isotropic reconstructions with �sm = 14 h−1 Mpc (i.e. the same measurement as in Fig. 1)
with the first and the second order LPT models. Here the dotted lines are our Gaussian model based on C(k) at k = 0.3 h Mpc−1, i.e, the same
as the dotted lines in Fig. 1, while the short dashed lines are from the first order LPT model and the long dashed lines are including the second
order LPT terms. We find that including the second-order terms improves the agreement between the measured C(k) and the model before
reconstruction (black lines), while it worsens the agreement after reconstruction along the line of sight. We suspect that the assumptions such
as the smoothed non-linear density field being the smoothed linear density field may breaks down when we consider higher order terms.
Note that our simple models based on equations (15) and (16) (dotted lines) describe the measured C(k) fairly accurately before and after
reconstruction. We find that the second term in equation (A22) is indeed negligible and we conclude that our modified Gaussian model is a
good description of the post-reconstruction propagators.

For the redshift of z = 0.55 of the mock we consider in this paper, we expect non-linear damping of
∫

dp

6π2 PL(p) = 6.47 h−1 Mpc across

the line of sight and (1 + f )
∫

dp

6π2 PL(p) = 11.26 h−1 Mpc along the line of sight. These values are slightly larger than the Gaussian model
values we quote based on C(k) at k = 0.3 h Mpc−1, i.e. �nl = 5.9 h−1 Mpc across the line of sight (to be exact, at μ = 0.05) and 10.4 h−1 Mpc
along the line of sight (to be exact, at μ = 0.95), which agrees with the first order approximation slightly overestimating the damping in
Fig. B1. After reconstruction, we predict �dd = 2.52 h−1 Mpc, (1 + f)�dd = 4.38 h−1 Mpc, �ss = 5.4 h−1 Mpc, �sd = 4.21 h−1 Mpc with
�sm = 10 h−1 Mpc.

With �sm = 14 h−1 Mpc, we predict �dd = 3 h−1 Mpc, (1 + f)�dd = 5.22 h−1 Mpc, �ss = 5.05 h−1 Mpc, �sd = 4.15 h−1 Mpc. Finally with
�sm = 20 h−1 Mpc, we predict �dd = 3.52 h−1 Mpc, (1 + f)�dd = 6.12 h−1 Mpc, �ss = 4.63 h−1 Mpc, �sd = 4.11 h−1 Mpc.

Based on equation (A22), when the second term equation (A22) is small, which seems to be the case, we expect that (1 + f)�dd should
agree with the measured �nl values along the line of sight after reconstruction. We found 5.1, 5.6, and 6.2 h−1 Mpc for �sm = 10, 14, and
20 h−1 Mpc from Section 5.2, showing a good agreement for larger smoothing lengths compared to for smaller smoothing lengths.
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