423 research outputs found

    Structure and function of natural sulphide-oxidizing microbial mats under dynamic input of light and chemical energy

    Get PDF
    We studied the interaction between phototrophic and chemolithoautotrophic sulphide-oxidizing microorganisms in natural microbial mats forming in sulphidic streams. The structure of these mats varied between two end-members: one characterized by a layer dominated by large sulphur-oxidizing bacteria (SOB; mostly Beggiatoa-like) on top of a cyanobacterial layer (B/C mats) and the other with an inverted structure (C/B mats). C/B mats formed where the availability of oxygen from the water column was limited (<5 mu M). Aerobic chemolithotrophic activity of the SOB depended entirely on oxygen produced locally by cyanobacteria during high light conditions. In contrast, B/C mats formed at locations where oxygen in the water column was comparatively abundant (445 mu M) and continuously present. Here SOB were independent of the photosynthetic activity of cyanobacteria and outcompeted the cyanobacteria in the uppermost layer of the mat where energy sources for both functional groups were concentrated. Outcompetition of photosynthetic microbes in the presence of light was facilitated by the decoupling of aerobic chemolithotrophy and oxygenic phototrophy. Remarkably, the B/C mats conserved much less energy than the C/B mats, although similar amounts of light and chemical energy were available. Thus ecosystems do not necessarily develop towards optimal energy usage. Our data suggest that, when two independent sources of energy are available, the structure and activity of microbial communities is primarily determined by the continuous rather than the intermittent energy source, even if the time-integrated energy flux of the intermittent energy source is greater

    A Mass Bound for Spherically Symmetric Black Hole Spacetimes

    Get PDF
    Requiring that the matter fields are subject to the dominant energy condition, we establish the lower bound (4π)1κA(4\pi)^{-1} \kappa {\cal A} for the total mass MM of a static, spherically symmetric black hole spacetime. (A{\cal A} and κ\kappa denote the area and the surface gravity of the horizon, respectively.) Together with the fact that the Komar integral provides a simple relation between M(4π)1κAM - (4\pi)^{-1} \kappa A and the strong energy condition, this enables us to prove that the Schwarzschild metric represents the only static, spherically symmetric black hole solution of a selfgravitating matter model satisfying the dominant, but violating the strong energy condition for the timelike Killing field KK at every point, that is, R(K,K)0R(K,K) \leq 0. Applying this result to scalar fields, we recover the fact that the only black hole configuration of the spherically symmetric Einstein-Higgs model with arbitrary non-negative potential is the Schwarzschild spacetime with constant Higgs field. In the presence of electromagnetic fields, we also derive a stronger bound for the total mass, involving the electromagnetic potentials and charges. Again, this estimate provides a simple tool to prove a ``no-hair'' theorem for matter fields violating the strong energy condition.Comment: 16 pages, LATEX, no figure

    GEMS: The Size Evolution of Disk Galaxies

    Full text link
    We combine HST imaging from the GEMS survey with photometric redshifts from COMBO-17 to explore the evolution of disk-dominated galaxies since z<1.1. The sample is comprised of all GEMS galaxies with Sersic indices n<2.5, derived from fits to the galaxy images. We account fully for selection effects through careful analysis of image simulations; we are limited by the depth of the redshift and HST data to the study of galaxies with absolute magnitudes M(V)10. We find strong evolution in the magnitude-size scaling relation for galaxies with M(V)<-20, corresponding to a brightening of 1 mag per sqarcsec in rest-frame V-band by z=1. Yet, disks at a given absolute magnitude are bluer and have lower stellar mass-to-light ratios at z=1 than at the present day. As a result, our findings indicate weak or no evolution in the relation between stellar mass and effective disk size for galaxies with log(M)>10 over the same time interval. This is strongly inconsistent with the most naive theoretical expectation, in which disk size scales in proportion to the halo virial radius, which would predict that disks are a factor of two denser at fixed mass at z=1. The lack of evolution in the stellar mass-size relation is consistent with an ``inside-out'' growth of galaxy disks on average (galaxies increasing in size as they grow more massive), although we cannot rule out more complex evolutionary scenarios.Comment: 22 pages, 16 figures, submitted to Ap

    "It's not like taking chocolates": factors influencing the feasibility and sustainability of universal test and treat in correctional health systems in Zambia and South Africa

    Get PDF
    Background: Sub-Saharan African correctional facilities concentrate large numbers of people who are living with HIV or at risk for HIV infection. Universal test and treat (UTT) is widely recognized as a promising approach to improve the health of individuals and a population health strategy to reduce new HIV infections. In this study, we explored the feasibility and sustainability of implementing UTT in correctional facilities in Zambia and South Africa. Methods: Nested within a UTT implementation research study, our qualitative evaluation of feasibility and sustainability used a case-comparison design based on data from 1 Zambian and 3 South African correctional facilities. Primary data from in-depth interviews with incarcerated individuals, correctional managers, health care providers, and policy makers were supplemented by public policy documents, study documentation, and implementation memos in both countries. Thematic analysis was informed by an empirically established conceptual framework for health system analysis. Results: Despite different institutional profiles, we were able to successfully introduce UTT in the South Africa and Zambian correctional facilities participating in the study. A supportive policy backdrop was important to UTT implementation and establishment in both countries. However, sustainability of UTT, defined as relevant government departments' capacity to independently plan, resource, and administer quality UTT, differed. South Africa's correctional facilities had existing systems to deliver and monitor chronic HIV care and treatment, forming a “scaffolding” for sustained UTT despite some human resources shortages and poorly integrated health information systems. Notwithstanding recent improvements, Zambia's correctional health system demonstrated insufficient material and technical capacity to independently deliver quality UTT. In the correctional facilities of both countries, inmate population dynamics and their impact on HIV-related stigma were important factors in UTT service uptake. Conclusion: Findings demonstrate the critical role of policy directives, health service delivery systems, adequate resourcing, and population dynamics on the feasibility and likely sustainability of UTT in corrections in Zambia and South Africa

    An Explanation for the Observed Weak Size Evolution of Disk Galaxies

    Get PDF
    Surveys of distant galaxies with the Hubble Space Telescope and from the ground have shown that there is only mild evolution in the relationship between radial size and stellar mass for galactic disks from z~1 to the present day. Using a sample of nearby disk-dominated galaxies from the Sloan Digital Sky Survey (SDSS), and high redshift data from the GEMS (Galaxy Evolution from Morphology and SEDs) survey, we investigate whether this result is consistent with theoretical expectations within the hierarchical paradigm of structure formation. The relationship between virial radius and mass for dark matter halos in the LCDM model evolves by about a factor of two over this interval. However, N-body simulations have shown that halos of a given mass have less centrally concentrated mass profiles at high redshift. When we compute the expected disk size-stellar mass distribution, accounting for this evolution in the internal structure of dark matter halos and the adiabatic contraction of the dark matter by the self-gravity of the collapsing baryons, we find that the predicted evolution in the mean size at fixed stellar mass since z~1 is about 15-20 percent, in good agreement with the observational constraints from GEMS. At redshift z~2, the model predicts that disks at fixed stellar mass were on average only 60% as large as they are today. Similarly, we predict that the rotation velocity at a given stellar mass (essentially the zero-point of the Tully-Fisher relation) is only about 10 percent larger at z~1 (20 percent at z~2) than at the present day.Comment: 13 pages, 6 figures, accepted for publication in ApJ. Revised in response to referee's comments to improve clariry. Results are unchange

    Cytochrome oxidase subunit VI of Trypanosoma brucei is imported without a cleaved presequence and is developmentally regulated at both RNA and protein levels

    Get PDF
    Mitochondrial respiration in the African trypanosome undergoes dramatic developmental stage regulation. This requires co-ordinated control of components encoded by both the nuclear genome and the kinetoplast, the unusual mitochondrial genome of these parasites. As a model for understanding the co-ordination of these genomes, we have examined the regulation and mitochondrial import of a nuclear-encoded component of the cytochrome oxidase complex, cytochrome oxidase subunit VI (COXVI). By generating transgenic trypanosomes expressing intact or mutant forms of this protein, we demonstrate that COXVI is not imported using a conventional cleaved presequence and show that sequences at the N-terminus of the protein are necessary for correct mitochondrial sorting. Analyses of endogenous and transgenic COXVI mRNA and protein expression in parasites undergoing developmental stage differentiation demonstrates a temporal order of control involving regulation in the abundance of, first, mRNA and then protein. This represents the first dissection of the regulation and import of a nuclear-encoded protein into the cytochrome oxidase complex in these organisms, which were among the earliest eukaryotes to possess a mitochondrion

    Identification and validation of oncologic miRNA biomarkers for Luminal A-like breast cancer

    Get PDF
    Introduction: Breast cancer is a common disease with distinct tumor subtypes phenotypically characterized by ER and HER2/neu receptor status. MiRNAs play regulatory roles in tumor initiation and progression, and altered miRNA expression has been demonstrated in a variety of cancer states presenting the potential for exploitation as cancer biomarkers. Blood provides an excellent medium for biomarker discovery. This study investigated systemic miRNAs differentially expressed in Luminal A-like (ER+PR+HER2/neu-) breast cancer and their effectiveness as oncologic biomarkers in the clinical setting. Methods: Blood samples were prospectively collected from patients with Luminal A-like breast cancer (n=54) and controls (n=56). RNA was extracted, reverse transcribed and subjected to microarray analysis (n=10 Luminal A-like; n=10 Control). Differentially expressed miRNAs were identified by artificial neural network (ANN) data-mining algorithms. Expression of specific miRNAs was validated by RQ-PCR (n=44 Luminal A; n=46 Control) and potential relationships between circulating miRNA levels and clinicopathological features of breast cancer were investigated. Results: Microarray analysis identified 76 differentially expressed miRNAs. ANN revealed 10 miRNAs for further analysis ( miR-19b, miR-29a, miR-93, miR-181a, miR-182, miR-223, miR-301a, miR-423-5p, miR-486-5 and miR-652 ). The biomarker potential of 4 miRNAs ( miR-29a, miR-181a , miR-223 and miR-652 ) was confirmed by RQ-PCR, with significantly reduced expression in blood of women with Luminal A-like breast tumors compared to healthy controls (p=0.001, 0.004, 0.009 and 0.004 respectively). Binary logistic regression confirmed that combination of 3 of these miRNAs ( miR-29a, miR-181a and miR-652 ) could reliably differentiate between cancers and controls with an AUC of 0.80. Conclusion: This study provides insight into the underlying molecular portrait of Luminal A-like breast cancer subtype. From an initial 76 miRNAs, 4 were validated with altered expression in the blood of women with Luminal A-like breast cancer. The expression profiles of these 3 miRNAs, in combination with mammography, has potential to facilitate accurate subtype- specific breast tumor detection

    Co-ordination between Rashba spin-orbital interaction and space charge effect and enhanced spin injection into semiconductors

    Full text link
    We consider the effect of the Rashba spin-orbital interaction and space charge in a ferromagnet-insulator/semiconductor/insulator-ferromagnet junction where the spin current is severely affected by the doping, band structure and charge screening in the semiconductor. In diffusion region, if the the resistance of the tunneling barriers is comparable to the semiconductor resistance, the magnetoresistance of this junction can be greatly enhanced under appropriate doping by the co-ordination between the Rashba effect and screened Coulomb interaction in the nonequilibrium transport processes within Hartree approximation.Comment: 4 pages, 3 figure
    corecore