1,046 research outputs found

    Evolutionary instability of selfish learning in repeated games

    Get PDF
    Across many domains of interaction, both natural and artificial, individuals use past experience to shape future behaviors. The results of such learning processes depend on what individuals wish to maximize. A natural objective is one’s own success. However, when two such “selfish” learners interact with each other, the outcome can be detrimental to both, especially when there are conflicts of interest. Here, we explore how a learner can align incentives with a selfish opponent. Moreover, we consider the dynamics that arise when learning rules themselves are subject to evolutionary pressure. By combining extensive simulations and analytical techniques, we demonstrate that selfish learning is unstable in most classical two-player repeated games. If evolution operates on the level of long-run payoffs, selection instead favors learning rules that incorporate social (other-regarding) preferences. To further corroborate these results, we analyze data from a repeated prisoner’s dilemma experiment. We find that selfish learning is insufficient to explain human behavior when there is a trade-off between payoff maximization and fairness

    Chemical Evolution in the Carina Dwarf Spheroidal

    Full text link
    We present metallicities for 487 red giants in the Carina dwarf spheroidal (dSph) galaxy that were obtained from FLAMES low-resolution Ca triplet (CaT) spectroscopy. We find a mean [Fe/H] of -1.91 dex with an intrinsic dispersion of 0.25 dex, whereas the full spread in metallicities is at least one dex. The analysis of the radial distribution of metallicities reveals that an excess of metal poor stars resides in a region of larger axis distances. These results can constrain evolutionary models and are discussed in the context of chemical evolution in the Carina dSph.Comment: 3 pages, 2 figures, to be published in the proceedings of the ESO/Arcetri-workshop on "Chemical Abundances and Mixing in Stars", 13.-17. Sep. 2004, Castiglione della Pescaia, Italy, L. Pasquini, S. Randich (eds.

    uPA and PAI-1 as biomarkers in breast cancer: validated for clinical use in level-of-evidence-1 studies

    Get PDF
    Urokinase plasminogen activator (uPA) is an extracellular matrix-degrading protease involved in cancer invasion and metastasis, interacting with plasminogen activator inhibitor-1 (PAI-1), which was originally identified as a blood-derived endogenous fast-acting inhibitor of uPA. At concentrations found in tumor tissue, however, both PAI-1 and uPA promote tumor progression and metastasis. Consistent with the causative role of uPA and PAI-1 in cancer dissemination, several retrospective and prospective studies have shown that elevated levels of uPA and PAI-1 in breast tumor tissue are statistically independent and potent predictors of poor patient outcome, including adverse outcome in the subset of breast cancer patients with lymph node-negative disease. In addition to being prognostic, high levels of uPA and PAI-1 have been shown to predict benefit from adjuvant chemotherapy in patients with early breast cancer. The unique clinical utility of uPA/PAI-1 as prognostic biomarkers in lymph node-negative breast cancer has been confirmed in two independent level-of-evidence-1 studies (that is, in a randomized prospective clinical trial in which the biomarker evaluation was the primary purpose of the trial and in a pooled analysis of individual data from retrospective and prospective studies). Thus, uPA and PAI-1 are among the best validated prognostic biomarkers currently available for lymph node-negative breast cancer, their main utility being the identification of lymph node-negative patients who have HER-2-negative tumors and who can be safely spared the toxicity and costs of adjuvant chemotherapy. Recently, a phase II clinical trial using the low-molecular-weight uPA inhibitor WX-671 reported activity in metastatic breast cancer

    uPA and PAI-1 as biomarkers in breast cancer: validated for clinical use in level-of-evidence-1 studies

    Get PDF
    Urokinase plasminogen activator (uPA) is an extracellular matrix-degrading protease involved in cancer invasion and metastasis, interacting with plasminogen activator inhibitor-1 (PAI-1), which was originally identified as a blood-derived endogenous fast-acting inhibitor of uPA. At concentrations found in tumor tissue, however, both PAI-1 and uPA promote tumor progression and metastasis. Consistent with the causative role of uPA and PAI-1 in cancer dissemination, several retrospective and prospective studies have shown that elevated levels of uPA and PAI-1 in breast tumor tissue are statistically independent and potent predictors of poor patient outcome, including adverse outcome in the subset of breast cancer patients with lymph node-negative disease. In addition to being prognostic, high levels of uPA and PAI-1 have been shown to predict benefit from adjuvant chemotherapy in patients with early breast cancer. The unique clinical utility of uPA/PAI-1 as prognostic biomarkers in lymph node-negative breast cancer has been confirmed in two independent level-of-evidence-1 studies (that is, in a randomized prospective clinical trial in which the biomarker evaluation was the primary purpose of the trial and in a pooled analysis of individual data from retrospective and prospective studies). Thus, uPA and PAI-1 are among the best validated prognostic biomarkers currently available for lymph node-negative breast cancer, their main utility being the identification of lymph node-negative patients who have HER-2-negative tumors and who can be safely spared the toxicity and costs of adjuvant chemotherapy. Recently, a phase II clinical trial using the low-molecular-weight uPA inhibitor WX-671 reported activity in metastatic breast cancer
    • …
    corecore